Introduction to Game Theory

B. Nebel, R. Mattmüller
T. Schulte, D. Speck

Summer semester 2015

University of Freiburg
Department of Computer Science

Exercise Sheet 10

Due: Friday, July 10th, 2015
Exercise 10.1 (Voting procedures, 4 points)
Consider the following voting procedures (for simplicity, we assume that ties are broken in favor of the candidate with the lower index):
Plurality vote: Only top preferences are taken into account. The candidate with most top preferences wins.
Instant runoff voting: Iteratively candidates with the fewest top preferences are eliminated until only one candidate, the winner, remains.
Coombs method: Iteratively candidates with the most bottom (lowest) preferences are eliminated until only one candidate, the winner, remains.
Borda count: If a candidate is in position j of a voter's preference list, he gets $m-j$ points from that voter. Points from all voters are added. The candidate with most points wins.
Give preference relations $\prec_{1}, \ldots, \prec_{n}$ over a candidate set $A=\left\{a_{1}, \ldots, a_{m}\right\}$ such that the above-mentioned voting procedures return as many different winners as possible. You will obtain one point per different winner.

Exercise 10.2 (Properties of voting procedures, 4 points)
Consider the voting procedures plurality vote, instant runoff voting, and the Borda count. Again, we assume that ties are broken in favor of the candidate with the lower index. Moreover, $|A| \geq 3$. Consider the following properties:
Majority criterion: If for more than half of the voters $i, b \prec_{i} a$ for all $b \in$ $A \backslash\{a\}$, then $f\left(\prec_{1}, \ldots, \prec_{n}\right)=a$.
Reversal symmetry: If $f\left(\prec_{1}, \ldots, \prec_{n}\right)=a$ and $a \prec_{i}^{\prime} b$ iff $b \prec_{i} a$ for all $i=$ $1, \ldots, n$ and $a, b \in A$, then $f\left(\prec_{1}^{\prime}, \ldots, \prec_{n}^{\prime}\right) \neq a$.
Incentive compatibility: $f\left(\prec_{1}, \ldots, \prec_{i}^{\prime}, \ldots, \prec_{n}\right) \preceq_{i} f\left(\prec_{1}, \ldots, \prec_{i}, \ldots, \prec_{n}\right)$ for all $\prec_{1}, \ldots, \prec_{n}, \prec_{i}^{\prime} \in L$.
For each of the nine combinations of voting procedure f and property P, show that f satisfies P or give a counterexample.

The exercise sheets may and should be worked on and handed in in groups of two students. Please indicate both names on your solution.

