
Introduction to Game Theory

B. Nebel, R. MattmüllerT. Schulte, D. SpeckSummer semester 2015

University of Freiburg Department of Computer Science

Exercise Sheet 7 Due: Friday, June 19th, 2015

Exercise 7.1 (Induced Strategic Game, 2 + 2 points) Consider the two player extensive form game defined by the following game tree.

- (a) Specify the induced strategic game.
- (b) Determine all Nash equilibria and identify all non-credible threats.

Exercise 7.2 (Extensive Games, 2 + 1 + 1 points)

The owner of a retail chain R operates stores in K cities. In each city $k, 1 \leq k \leq K$, there is a potential competitor C_k who can decide to open up a store (O_k) or to stay out of business $(\neg O_k)$. If competitor C_k opens a store, R can either start a price war (P_k) or ignore the competitor $(\neg P_k)$. The competitors make their decisions sequentially, i.e. when C_k makes its decision, C_1, \ldots, C_{k-1} have already made their decisions and C_k is aware of their choice and the reactions of R. In every city k competitor C_k gets payoff 0 if he chooses to stay out of business, payoff 2 if he opens a store and R is not starting a price war, and payoff -2 if he opens a store and R starts a price war. The retail chain owner R gets a payoff of 3K if no competitor opens a store. For every competitor opening a store R's payoff is reduced by 2. For every price war R decides to start the payoff is additionally reduced by 1. Regard the special case of K = 2.

- (a) Model this situation as an extensive game with perfect information and specify the game tree.
- (b) Specify the set of C_2 's strategies.
- (c) Determine a subgame perfect equilibrium and a Nash equilibrium that is not a subgame perfect equilibrium.

The exercise sheets may and should be worked on, and handed in, in groups of two students. Please indicate both names on your solution.