Multiagent Systems 12. Resource Allocation

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

July 11, 2014

Multiagent Systems

B. Nebel, C. Becker-

Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatoria Auctions

Motivation

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item

Combinatoria Auctions

What we've learned so far

Last time we learned:

- Coalition Games with Goals
 - Goals, not numeric utilities, as targets for agents
 - Qualitative coalition games
 - Coalition resource game
- Coalition Structure Formation
 - Maximizing social welfare, instead of individual agent's utility
 - Number of coalition structures exponential in the number of coalitions

Today: Resource Allocation

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Resource allocation: background

The situation:

- Only scarce resources available
- More than one agent interested in resources
- \Rightarrow How to allocate resources **efficiently**, i.e. allocate them to those agents that value them the most?

Auctions are a solution; different types introduced today:

- English auctions
- Dutch auctions
- First-price sealed-bid auctions
- Vickrey auctions
- Combinatorial auctions

Multiagent Systems

B. Nebel, C. Becker Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Classifying auctions

Auction protocol and strategy are effected by several factors:

- Value of good:
 - public/common (standard one dollar bill)
 - private (bill signed by Bill Clinton), or
 - correlated (special bill, but reselling value also important)
- Auction protocol:
 - Winner determination: first-price or second-price auction
 - Bidding procedure: open cry or sealed-bid
 - Mechanism: one-shot or ascending/descending
- Single versus multiple items

Next, private/correlated, first-price, open-cry, ascending, single item auction:

 \Rightarrow English auction

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Single Item Auctions

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatoria Auctions

Summarv

English auctions

Auction	Action protocol	# items
English auction	first-price, open cry, one-shot, ascending	single

English auction (EA) perhaps the most commonly known type of auction (Sotheby's):

- Procedure:
 - 4 Auctioneer suggests reservation price (may be zero)
 - Agents must bid more than the current highest bid
 - All agents see the bids being made and can place bids at any time
 - No more bids ⇒ current highest bid wins and agent has to pay amount of his bid
- If value is correlated, counterspeculation can occur
- Dominant strategy in private EA: bid a small amount above highest current bid until one's own valuation reached

Winner's curse: Why did no other agent value the good so highly? Did I pay too much?

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Dutch auctions

Auction	Action protocol	# items
Dutch auction	first-price, open cry, one-shot, descending	single

Dutch auction (DA):

- Procedure:
 - Auctioneer starts with artificially high value much above the expected value of any bidder's valuation
 - Auctioneer continuously lowers the offer price by small value until . . .
 - Some agent makes a bid for the good equal to the current offer price
 - The agent has to pay amount of his bid
- DA is also susceptible to winner's curse

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

First-price, sealed-bid auctions

Auction	Action protocol	# items
First-price sealed-bid	first-price, sealed-bid , one-shot	single

First-price sealed-bid auction is simplest of all auctions considered here:

- Procedure:
 - Single round, in which bidders submit their bids privately to the auctioneer
 - Auctioneer awards good to agent with highest bid
 - The agent has to pay amount of his bid
- Dominant strategy: Bid less than its true value
- Problem: How much less?
- No general solution as it depends on the other agents

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Vickrey auctions

Auction	on Action protocol	
Vickrey auction	second-price, sealed-bid, one-shot	single

Vickrey auctions:

- Probably the most counterintuitive auction type
- Procedure:
 - Single round, in which bidders submit their bids privately to the auctioneer
 - Auctioneer awards good to agent with highest bid
 - The agent has to pay amount of second-highest bid!
- Dominant strategy: Bidders bid their true valuations
- not prone to strategic manipulation
- not very popular in real life, but very successful in computational auction systems
- Problem: anti-social behavior might occur

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Expected revenue

The **expected revenue** of the auctioneer depends on attitudes of auctioneers and bidders:

- Risk-neutral bidders: revenue provably identical in all four auctions (under certain simple assumptions)
- Risk-averse bidders: Dutch and first-price sealed-bid auctions best for auctioneer's revenue as risk-averse bidders 'insure' themselves by bidding slightly more than true valuation
- Risk-averse auctioneers: Prefer Vickrey or English auction over first-price sealed-bid and Dutch

Important:

- For first result private values must exist in agents
- In general, auction scenario must carefully be analyzed when choosing auction protocol

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Lies and collusion

Ideally:

- auctioneer wants a protocol to be immune to collusions by bidders
- bidders want honesty to be dominant strategy for auctioneer

Solutions:

- immune to collusions ⇒ bidders don't know each other
- ② honest auctioneer ⇒ open-cry auctions or third party handles bids (esp. in case of second price auction)

Further opportunity for auctioneer to manipulate: place bogus bidders, known as shells to realize shill bidding ⇒ esp. problematic in online auctions such as ebay

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Single item auctions overview

Auction	Action protocol	Auctioneer's revenue best when
English auction	first-price, open cry, one-shot, ascending	auctioneers risk-averse
Dutch auction	first-price, open cry, one-shot, descending	bidders risk-averse
First-price sealed-bid	first-price, sealed-bid , one-shot	bidders risk-averse
Vickrey auction	second-price, sealed- bid, one-shot	auctioneers risk-averse

Counterspeculation:

- bidders try to gain information either about true value of good, or about the valuations of other bidders
- If free and accurate, then every agent would do it
- Otherwise, only if agent's expected result with costly counterspeculation no worse than result without

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Combinatorial Auctions

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item

Combinatorial Auctions

Bidding languages Winner determination

VCG mechanism I

Combinatorial Auctions

Vickrey auctions work well for single items. How about resources that are divisible?

- ⇒ Combinatorial auctions:
 - Generalized model of resource allocation
 - Auctioning bundles of goods $\mathcal{Z} = \{z_1, \dots, z_n\}$ (e.g. frequency bands of the mobile phone network)
 - New valuation function $v_i: \mathbf{2}^{\mathcal{Z}} \to \mathbb{R}$ indicates how much each $Z \subseteq \mathcal{Z}$ is worth to agent i
 - Important properties of valuation functions:
 - Normalization: $v(\emptyset) = 0$
 - Free disposal: $Z_1 \subseteq Z_2 \Rightarrow v(Z_1) \leq v(Z_2)$
 - Outcome: allocation Z_1, Z_2, \ldots, Z_n of goods being auctioned among the agents

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Bidding languages Winner determination VCG mechanism I

Combinatorial Auctions & social welfare

One natural property combinatorial auctions should satisfy is \Rightarrow maximization of social welfare

$$Z_1^*,\dots,Z_n^* = \argmax_{(Z_1,\dots,Z_n) \in \mathsf{alloc}(\mathcal{Z},Ag)} sw(Z_1,\dots,Z_n,v_1,\dots,v_n)$$
 where $sw(Z_1,\dots,Z_n,v_1,\dots,v_n) = \sum_{i=1}^n v_i(Z_i)$

- Winner determination: computing the optimal allocation Z_1^*, \ldots, Z_n^* given the valuations submitted by bidders
- Strategic manipulation: agents may not reveal their true valuations (e.g. may overstate the value of bundles)
- Representational complexity: exponential in the number of goods (listing all possible valuations of all bundles)
- Computational complexity: winner determination is NP-hard even under restrictive assumptions

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Bidding languages Winner determination VCG mechanism I

Bidding languages

As before, most succinct representation schemes for valuation function preferred; first option: Atomic bid

- ullet $\beta = (Z, p)$, where $Z \subseteq \mathcal{Z}$ and $p \in \mathbb{R}_+$ is the price
- A bundle of goods Z' satisfies (Z, p) if $Z \subseteq Z'$, e.g.:
 - Bundle $\{a, b, c\}$ satisfies the atomic bit $(\{a, b\}, 4)$
 - Bundle $\{b, d\}$ does not satisfy the atomic bid $(\{a, b\}, 4)$
- An atomic bid $\beta = (Z, p)$ defines the valuation function v_{β}

$$v_{\beta}(Z') = \begin{cases} p & \text{if } Z' \text{ satisfies } (Z, p) \\ 0 & \text{otherwise} \end{cases}$$

 Not sufficient to express very interesting valuation functions

Multiagent Systems

B Nebel C. Becker-Asano. S Wälfl

Bidding languages Winner determination

me chanism I Summary

XOR bids

XOR bids: Specify a number of bids, but par for at most one

- $\beta=(Z_1,p_1)$ XOR ... XOR (Z_k,p_k) , for example: $\beta_1=(\{a,b\},3)$ XOR $(\{c,d\},5)$ \Rightarrow "I would pay 3 for a bundle that contains a and b but not c and d; 5 for a bundle with c and d but not a and b; and 5 for a bundle with a, b, c, and d."
- Formally:

$$v_{eta}(Z') = egin{cases} 0 & ext{if } Z' ext{ does not satisfy any of} \ & (Z_1,p_1),\dots,(Z_k,p_k) \ & \max\{p_i|Z_i\subseteq Z'\} & ext{otherwise} \end{cases}$$

- XOR bids are fully expressive
- ullet number of bids may be exponential in $|\mathcal{Z}|$
- ullet $v_eta(Z)$ can be computed in polynomial time

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Auctions
Bidding
languages
Winner
determination
VCG
mechanism

OR bids

OR bids: Combine more than one atomic statement disjunctively

- $\begin{array}{l} \bullet \;\; \beta=(Z_1,p_1) \;\; \text{OR} \;\; \dots \;\; \text{OR} \;\; (Z_k,p_k) \text{, for example:} \\ \beta_1=(\{a,b\},3) \;\; \text{OR} \;\; (\{c,d\},5) \Rightarrow v_{\beta_1}(\{a,b,c,d\})=8 \end{array}$
- valuation function v for $Z' \subseteq \mathcal{Z}$ is determined w.r.t. atomic bids W so that:
 - lacktriangle every bid in W is satisfied by Z'
 - $oldsymbol{0}$ each pair of bids in W has mutually disjoint sets of goods
 - $\textbf{3} \ \ \text{there is no other subset of bids} \ W' \ \text{from} \ W \ \text{satisfying the first two conditions that} \ \sum_{(Z_i,p_i)\in W'} p_i > \sum_{(Z_j,p_j)\in W} p_j$
- Not fully expressive, consider: $v(\lbrace a \rbrace) = 1, v(\lbrace b \rbrace) = 1, v(\lbrace a, b \rbrace) = 1$
- Can be exponentially more succinct than XOR bids

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Bidding languages Winner determination VCG mechanism I

Winner determination I

Winner determination is combinatorial optimization problem ⇒ find sets of goods that maximizes some valuation function:

- Proven to be NP-hard in worst case
- Optimal solution calculated using standard technique
 integer linear programming:
 - objective function to maximize: $f(x_1, \ldots, x_k)$
 - subject to **constraints**:

$$\phi_1(x_1,\ldots,x_k), \phi_2(x_1,\ldots,x_k),\ldots,\phi_l(x_1,\ldots,x_k)$$

- With set \mathcal{Z} of goods, set $Ag = \{1, \dots, n\}$ of agents, and valuation functions v_1, \dots, v_n (one per agent), $Z \subseteq \mathcal{Z}$:
 - introduce variables $x_{i,Z}$, with $x_{i,Z}=1$, if bundle Z is allocated to agent i, otherwise $x_{i,Z}=0$
 - Note: many such variables need to be introduced!

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial
Auctions
Bidding
languages
Winner
determination

mechanism I Summary

Winner determination II

Winner determination can be encoded as integer linear program:

- ullet maximize: $\sum_{i\in Aq,Z\subset\mathcal{Z}}x_{i,Z}v_i(Z)$
- subject to constraints:
 - $\ \, \mathbf{0} \ \, \sum_{i \in Ag, Z \subseteq \mathcal{Z} | z \in Z} x_{i,Z} \le 1 \text{ for all } z \in \mathcal{Z}$

 - $\mathbf{3} \quad x_{i,Z} \geq 0 \text{ for all } i \in Ag, Z \subseteq \mathcal{Z}$

Meaning of constraints:

- On't allocate any good more than once
- Each agent is allocated no more than one bundle
- Assures that all variables are either 0 or 1 (together with previous constraints)

This approach works "surprisingly well in many cases." (Wooldridge, p. 307)

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Auctions
Bidding
languages
Winner
determination

mechanism I Summary

The VCG mechanism

Naïve mechanisms are prone to strategic manipulation, thus ⇒ design mechanism such that, if agents act rationally, dominant strategy is (again) to tell true valuation function

Vickrey-Clarke-Grooves mechanism (VCG mechanism) is generalization of Vickrey's auction from single to divisible goods

Terminology:

- ullet 'Indifferent' valuation function $v^0(Z)=0$ for all $Z\subseteq\mathcal{Z}$
- $sw_{-i}(Z_1,\dots,Z_n) = \sum_{j\in Ag: j\neq i} v_j(Z_j)$, social welfare of all agents but i

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial
Auctions
Bidding
languages
Winner
determination
VCG
mechanism

VCG mechanism II

The Vickrey-Clarke-Grooves mechanism:

- **1** Agents declare valuation functions \hat{v}_i (may not be true)
- Mechanism chooses allocation maximizing social welfare:

$$Z_1^*,\dots,Z_n^* = \argmax_{(Z_1,\dots,Z_n)\in \mathsf{alloc}(\mathcal{Z},Ag)} sw(Z_1,\dots,Z_n,\hat{v}_1,\dots,\hat{v}_i,\dots,\hat{v}_n)$$

- **3** Every agent pays to the mechanism or receives from it an amount p_i :
 - ullet compensation' for the utility other agents lose by i participating, or
 - 'reward' for improving the overall utility (then $p_i < 0$)

```
p_i = sw_{-i}(Z_1', \dots, Z_n', \hat{v}_1, \dots, v_0, \dots, \hat{v}_n) - sw_{-i}(Z_1^*, \dots, Z_n^*, \hat{v}_1, \dots, \hat{v}_i, \dots, \hat{v}_n), \text{ where}
Z_1', \dots, Z_n' = \underset{(Z_1, \dots, Z_n) \in \mathsf{alloc}(\mathcal{Z}, Ag)}{\arg\max} sw(Z_1, \dots, Z_n, \hat{v}_1, \dots, \hat{v}^0, \dots, \hat{v}_n)
```

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial
Auctions
Bidding
languages
Winner
determination
VCG
mechanism

VCG mechanism III

Properties of the VCG mechanism:

- VCG mechanism is incentive compatible, i.e. telling the truth is dominant strategy
- ullet For a single goos VCG mechanism reduces to Vickrey mechanism $\Rightarrow p_i$ would be the amount of second highest valuation
- ullet Computing VCG payments p_i is NP-hard

VCG mechanism shows that ⇒ social welfare maximization can be implemented in dominant strategies in combinatorial auctions!

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial
Auctions
Bidding
languages
Winner
determination
VCG
mechanism

Summary

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item

Combinatoria Auctions

Summary Thanks

Summary

What we have learned today:

- Different auction types, protocols, and properties thereof
 - English, Dutch, First-price sealed-bid, and Vickrey auction
 - open cry versus sealed-bid, ascending versus descending
 - honesty & collusion
- Combinatorial auctions
 - valuation functions & their properties
 - maximization of social welfare
 - Bidding languages
 - Winner determination
 - The VCG mechanism

Next: Bargaining

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Summary Thanks

Acknowledgments

These lecture slides are (partly) based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley & Sons, 2nd edition 2009.

Multiagent Systems

B. Nebel, C. Becker-Asano, S. Wölfl

Motivation

Single Item Auctions

Combinatorial Auctions

Summary Thanks