Multiagent Systems 11. Coalition Formation (continued)

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

July 4, 2014

Multiagent Systems

July 4, 2014 — 11. Coalition Formation (continued)

- 11.1 Motivation
- 11.2 Coalition games with Goals
- 11.3 Coalition Structure Formation
- 11.4 Summary

11.1 Motivation

What we've learned so far

Last time we learned about:

- ► Coalition formation
- ► The core of a coalition game
- ► The Shapley value
- Different representations for different types of games
 - General coalition games: induced subgraphs & marginal contribution nets
 - ► Simple games: (k-)weighted voting games
- ► The Shapley-Shubic power index of simple games

Today:

Coalition Games with Goals & Coalition Structure Formation

11.2 Coalition games with Goals

Coalition Games with Goals

So far, utility in coalition games was represented as some numeric value:

$$\nu: \mathbf{2}^{\mathsf{Ag}} o \mathbb{R}$$

In BDI systems (such as Jason) this is inappropriate. System designers want their agents to achieve some goal(s).

- ⇒ Qualitative coalition games (QCG)
 - ► Each agent has set of goals and wants one of them to be achieved, but does not care which one
 - ► Agents cooperate to achieve mutually satisfying sets of goals

Qualitative coalition games

Formal model:

- every coalition C has a set of choices V(C), i.e. different ways the coalition C could chose to cooperate
- lacktriangle characteristic function of QCG has signature $V:\mathbf{2}^{Ag}
 ightarrow\mathbf{2}^{\mathbf{2}^{G}}$

Suppose set of goals $G' \subseteq G$ is achieved:

- ▶ G' satisfies an agent i if $G_i \cap G' \neq \emptyset$, i.e. at least one of its goals is achieved
- ▶ G' is feasible for a coalition C, if $G' \in V(C)$, i.e. G' is one of the choices available to C
- ► Coalition C is successful, if C can cooperate in such a way that G' satisfies every member of C

Propositional logic representation is complete, but not guaranteed to be succinct.

Coalition resource game

QCGs say nothing about where the characteristic function comes form, or how it is derived for a given scenario.

- ⇒ The coalition resource game framework (Wooldridge & Dunne, 2006):
 - Simple idea: To achieve a goal requires consumption of resources and each agent is endowed with a profile of resources
 - ► Coalitions form to **pool resources** and achieve mutually satisfactory set of goals

Interesting questions:

- ► Theoretical: Can a pair of coalitions achieve their goals whilst staying within their respective resource bounds?
- ► Real world: Can some countries achieve their economic objectives without consuming too many pollution-producing resources?

11.3 Coalition Structure Formation

Coalition Structure Formation

So far, every agent acts strategically just as in non-cooperative games, attempting maximization of own utility.

- ⇒ What if one designer owns all agents?
 - Performance of single agents perhaps not as important
 - ► Better maximize social welfare of the system
 - ► Maximizing social welfare ⇒ maximizing the sum of the values of individual coalitions

Coalition Structure

A coalition structure is a partition of the overall set of agents Ag into mutually disjoint coalitions.

Example, with $Ag = \{1, 2, 3\}$:

► Seven possible coalitions:

$$\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\},\{1,2,3\}$$

Five possible coalition structures:

$$\{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\},$$

 $\{\{3\}, \{1,2\}\}, \{\{1,2,3\}\}$

Coalition Structure Formation

Given game $G = \langle Ag, \nu \rangle$, the socially optimal coalition structure CS^* is defined as:

$$CS^* = \underset{CS \in \text{ partitions of } A_g}{\operatorname{arg max}} V(CS)$$

where

$$V(CS) = \sum_{C \in CS} \nu(C)$$

Unfortunately, there are exponentially more coalition structures over the sets of agents Ag then there will be coalitions over Ag

⇒ Exhaustive search is infeasible (in the worst case)!

Sandholm et al. (1999) developed a technique that guarantees to find a coalition structure that is within some provable bound from the optimal one.

11.4 Summary

■ Thanks

Summary

What we have learned today:

- Coalition Games with Goals
 - Goals, not numeric utilities, as targets for agents
 - Qualitative coalition games
 - Coalition resource game
- Coalition Structure Formation
 - Maximizing social welfare, instead of individual agent's utility
 - Number of coalition structures exponential in the number of coalitions

Next (on Wednesday): Allocating Scarce Resources

Acknowledgments

These lecture slides are based on the following resources:

► Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley & Sons, 2nd edition 2009.

14 / 14