Multiagent Systems 10. Coalition Formation

B. Nebel, C. Becker-Asano, S. Wölfl

Albert-Ludwigs-Universität Freiburg

July 2, 2014

Multiagent Systems July 2, 2014 — 10. Coalition Formation

- 10.1 Motivation
- 10.2 Terminology
- 10.3 Basics
- 10.4 Shapley value
- 10.5 Representation
- 10.6 Summary

10.1 Motivation

Motivation

Remember the prisoner's dilemma with the following payoff matrix:

In games like this one cooperation is prevented, because:

- ▶ Binding agreements are not possible
- Utility is given directly to individuals as the result of individual action

How about real world situations?

Prisoner's dilemma & the real world

Theoretical problems:

- ► Binding agreements are not possible
- ▶ Utility is given directly to individuals as the result of individual action

Real world situation:

- ► Contracts can form binding agreements
- ► Utility is given to **organizations**/groups of people and not to individuals

Under these circumstances cooperation becomes both possible and rational.

⇒ Cooperative game theory asks which contracts are meaningful solutions among self-interested agents.

10.2 Terminology

Terminology 1

Setting:

- ▶ $Ag = \{1, ..., n\}$ agents (finite, typically n > 2)
- ► Any subset C of Ag is called a coalition
- ightharpoonup C = Ag is the grand coalition
- lacktriangle A cooperative game is a pair $\mathcal{G} = \langle Ag, \nu \rangle$
- lacksquare $u:\mathbf{2}^{Ag}
 ightarrow\mathbb{R}$ is the characteristic function of the game
- $\nu(C)$ is the maximum utility C can achieve, regardless of the remaining agents' behaviors (outside of coalition C)
- ► A coalition with only one agent is a singleton coalition

Finally: individual actions, utilities, and the origin of ν do not matter, i.e. they are assumed to be given.

Example:

- ightharpoonup A game with $Ag = \{1, 2\}$
- ▶ Singleton coalitions $\nu(\{1\}) = 5$ and $\nu(\{2\}) = 5$
- Grand coalition $\nu(\{1,2\}) = 20$

Terminology II

A simple coalition game:

- value of any coalition is either 0 ('loosing') or 1 ('winning')
- voting systems can be understood in terms of simple games

General questions now:

- 1. Which coalitions might be formed by rational agents?
- 2. How should payoff be reasonably divided between members of a coalition?
- ⇒ Just as non-cooperative games had solution concepts (Nash-equilibria,
- ...), cooperative games have theirs as well (Shapley value, ...).

10.3 Basics

Three Stages of Cooperative Action

The cooperation lifecycle (Sandholm et al., 1999):

- ► Coalition structure generation:
 - ► Asking which coalitions will form, concerned with **stability**
 - For example, a productive agent has the incentive to defect from a coalition with a lazy agent
 - Necessary but not sufficient condition for establishment of a coalition
- ► Solving the optimization problem of each coalition:
 - Decide on collective plans
 - Maximize the collective utility of the coalition
- ▶ Dividing the value of the solution of each coalition:
 - ► Concerned with **fairness** of contract
 - ▶ How much an agent should receive based on her contribution

Outcome and Objections

Question: Which coalitions are stable?

- ▶ An outcome $x = \langle x_1, \dots, x_k \rangle$ for a coalition C in game $\langle Ag, \nu \rangle$ is a distribution of C's utility to members of C
- ▶ Outcomes must be **feasible** (don't overspend) and efficient don't underspend) $\Rightarrow \sum_{i \in C} x_i = \nu(C)$
- ► Example:
 - $Ag = \{1,2\}, \ \nu(\{1\}) = 5, \ \nu(\{2\}) = 5, \ \text{and} \ \nu(\{1,2\}) = 20$
 - Possible outcomes for $C_{grand}=\{1,2\}$ are $\langle 20,0\rangle$, $\langle 19,1\rangle$, ..., $\langle 1,19\rangle$, $\langle 0,20\rangle$
- ▶ C (e.g. a singleton coalition) **objects** to an outcome of a **grand coalition** (e.g. $\langle 1, 19 \rangle$), if there is some outcome for C (e.g. $\nu(\{1\}) = 5$) in which all members of C are strictly better off

Formally: $C \subseteq Ag$ object to $x = \langle x_1, \dots, x_n \rangle$ for the grand coalition, iff there exists some outcome $x' = \langle x'_1, \dots, x'_k \rangle$ for C, such that $x'_i > x_i$ for all $i \in C$

The core

Answering the question "Is the grand coalition stable?" is the same as asking:

Is the core non-empty?

The core

The core of a coalition game is the set of outcomes for the grand coalition to which nobody has an objection.

Non-empty core \Rightarrow there exists some way that the grand coalition can cooperate and distribute the resulting utility such that no (sub-)coalition could do better by defecting.

Previous example?

Core contains all outcomes between $\langle 15, 5 \rangle$ and $\langle 5, 15 \rangle$ inclusive

The core: problems

Despite the usefulness of the concept of the core, some problems arise:

- Sometimes the core is empty and to detect this all possible coalitions need to be enumerated ⇒ with n agents, 2ⁿ⁻¹ subsets / coalitions need to be checked!
- ▶ Fairness is not considered, e.g. $\langle 5, 15 \rangle \in core$, but all surplus goes to one agent alone

Solution to second problem is considered next.

10.4 Shapley value

Shapley value (preliminaries)

Idea: To eliminate unfair outcomes, try to divide surplus according to each agent's contribution

Define marginal contribution of i to C:

Marginal contribution

The marginal contribution $\mu_i(C)$ of agent i to coalition C is defined as: $\mu_i(C) = \nu(C \cup \{i\}) - \nu(C)$

Axioms any fair distribution should satisfy:

- ► Symmetry: if two agents contribute the same, then they should receive same payoff (they are interchangeable)
- ► Dummy player: agents not adding any value to any coalition should receive what they earn on their own
- ► Additivity: if two games are combined, then the value a player gets should equal the sum of the values it receives in the individual games

Shapley value

Shapley value

The Shapley value sh_i for agent i is defined as:

$$sh_i = \frac{1}{|Ag|!} \sum_{o \in \prod (Ag)} \mu_i(C_i(o))$$

- ► \prod (Ag) denotes the set of all possible orderings, i.e. permutations, for example, with $Ag = \{1, 2, 3\}$: $\prod (Ag) = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), ...\}$
- ▶ $C_i(o)$ denotes the set containing only those agents that appear before agent i in o, for example, with $o = \{3, 1, 2\}$: $C_3(o) = \emptyset$ and
 - $C_2(o) = \{1,3\}$
- ▶ Requires that $\nu(\emptyset) = 0$ and $\nu(C \cup C') \ge \nu(C) + \nu(C')$ if $C \cap C' = \emptyset$ (i.e. ν must be superadditive)

Shapley value: examples

Examples for calculations of the Shapley value:

- 1. Consider $\nu(\{1\}) = 5$, $\nu(\{2\}) = 5$, and $\nu(\{1,2\}) = 20$:
 - Intuition says to allocate 10 to each agent
 - $\mu_1(\emptyset) = 5$, $\mu_2(\emptyset) = 5$, $\mu_1(\{2\}) = 15$, $\mu_2(\{1\}) = 15$ $\Rightarrow sh_1 = sh_2 = (5+15)/2 = 10$ (same as intuition)
- 2. Consider $\nu(\{1\}) = 5$, $\nu(\{2\}) = 10$, and $\nu(\{1,2\}) = 20$:
 - ▶ $\mu_1(\emptyset) = 5$, $\mu_2(\emptyset) = 10$, $\mu_1(\{2\}) = \nu(\{1,2\}) \nu(\{2\}) = 20 10 = 10$, $\mu_2(\{1\}) = 20 5 = 15$ ⇒ $sh_1 = (5+10)/2 = 7.5$, $sh_2 = (10+15)/2 = 12.5$
 - ► Agent 2 contributes more than agent 1

 ⇒ receives higher payoff!

Shapley value: a dummy player example

Finally, consider $Ag=\{1,2,3\}$, with $\nu(\{1\})=5$, $\nu(\{2\})=5$, $\nu(\{3\})=5$, $\nu(\{1,2\})=10$, $\nu(\{1,3\})=10$, $\nu(\{2,3\})=20$, and $\nu(\{1,2,3\})=25$:

- ▶ We have $\mu_1(\emptyset) = 5$, $\mu_2(\emptyset) = 5$, $\mu_3(\emptyset) = 5$, $\mu_1(\{2\}) = 5$, $\mu_1(\{3\}) = 5$, $\mu_1(\{2,3\}) = 5$, $\mu_2(\{1\}) = 5$, $\mu_2(\{3\}) = 15$, $\mu_2(\{1,3\}) = 15$, $\mu_3(\{2\}) = 15$, $\mu_3(\{1,2\}) = 15$.
- ▶ Agent 1 is a dummy player and its share should be $sh_1 = 5$ (dummy player axiom)
- $ightharpoonup sh_2 = (5+5+15+15)/4 = 10$ and similarly $sh_3 = 10$.

Important: The Shapley value is the only value that satisfies the fairness axioms

10.5 Representation

- Induced subgraphs
- Marginal Contribution Nets
- Simple games

Computational and representational issues

Consider a naïve representation of a coalition game:

```
1, 2, 3

1 = 5

2 = 5

3 = 5

1, 2 = 10

1, 3 = 10

2, 3 = 20

1, 2, 3 = 25
```

This is infeasible, because it is exponential in the size of Ag!

- ⇒ **succinct** representation needed:
 - Modular representations exploit Shapley's axioms directly
 - ► Basic idea: divide the game into smaller games and exploit additivity axiom

Modular representations

Two modular representations will be discussed:

- 1. Induced subgraphs: a succinct, but incomplete representation
- 2. Marginal contribution nets: generalization of induced subgraphs, complete, but in worst case not succinct

Induced subgraphs

Idea: define characteristic function $\nu(C)$ by an undirected weighted graph

▶ Value of a coalition $C \subseteq Ag : \nu(C) = \sum_{\{i,j\} \subseteq C} w_{i,j}$

Example:

$$\begin{array}{c|cccc}
A & 3 & B \\
2 & & 1 & \nu(\{A, B, C\}) & = & 3 + 2 = 5 \\
\hline
0 & & \nu(\{D\}) & = & 5 \\
\hline
0 & & \nu(\{B, D\}) & = & 1 + 5 = 6 \\
\hline
0 & & \nu(\{A, C\}) & = & 2
\end{array}$$

- Not a complete representation
- But easy to compute the Shapley value for a given player in polynomial time: $sh_i = \frac{1}{2} \sum_{i \neq i} w_{i,i}$
- \Rightarrow Checking emptiness of the core is NP-complete, and membership to the core is co-NP-complete

Marginal Contribution Nets I

Idea: represent characteristic function as a set of rules

- 1 Structure of the rules:
 - **pattern** is conjunction of agents, e.g. $1 \wedge 3$
 - ▶ $1 \land 3$ would apply to $\{1,3\}$ and $\{1,3,5\}$, but not to $\{1\}$ or $\{8,12\}$
 - $C \models \phi$: the rule $\phi \rightarrow x$ applies to coalition C
 - $rs_C = \{\phi \rightarrow x \in rs \mid C \models \phi\}$: the rules that apply to C
- 2. The characteristic function associated with the ruleset rs:

$$\nu_{rs}(C) = \sum_{\phi \to x \in rs_C} x$$

B. Nebel, C. Becker-Asano, S. Wölfl (Universität Freibilbuumige)gent Systems

Marginal Contribution Nets II

Example:

- $ightharpoonup rs_1 = \{a \land b \rightarrow 5, b \rightarrow 2\}$
- $\nu_{rs_1}(\{a\}) = 0$, $\nu_{rs_1}(\{b\}) = 2$, and $\nu_{rs_1}(\{a,b\}) = 7$

Extension:

- Allow negation in rules indicating the absence of agents instead of their presence
- ▶ Example: with $rs_2 = \{a \land b \rightarrow 5, b \rightarrow 2, c \rightarrow 4, b \land \neg c \rightarrow -2\}$ we have $\nu_{rs_2}(\{b\}) = 0$ (2nd and 4th rule), and $\nu_{rs_2}(\{b,c\}) = 6$ (2nd and 3rd rule)

General properties:

- Shapley value can be computed in polynomial time
- Complete representation, but not necessarily succinct

Remember: A coalition game is simple, if the value of any coalition is either zero (losing) or one (winning).

- ► Simple games model yes/no voting systems
- ▶ $Y = \langle Ag, W \rangle$, where $W \subseteq \mathbf{2}^{Ag}$ is the set of winning coalitions
- \triangleright If $C \in W$, coalition C would be able to determine the outcome, 'yes' or 'no'

Important conditions:

- ▶ Non-triviality: $\emptyset \subset W \subset \mathbf{2}^{Ag}$
- ▶ Monotonicity: if $C_1 \subseteq C_2$ and $C_1 \in W$ then $C_2 \in W$
- ▶ Zero-sum: if $C \in W$ then $Ag \setminus C \notin W$
- ▶ Empty coalition loses: $\emptyset \notin W$
- ▶ Grand coalition wins: $Ag \in W$

Important: Naïve representation is exponential in the number of agents

24 / 30

Weighted Voting Games

Weighted voting games are an extension of simple games:

- ▶ For each agent $i \in Ag$ define a weight w_i
- Define an overall quota q
- ► A coalition is winning if the sum of their weights exceeds the quota:

$$u(C) = \begin{cases} 1 & \text{if } \sum_{i \in C} w_i \ge q \\ 0 & \text{otherwise} \end{cases}$$

Example: Simple majority voting, $w_i = 1$ and $q = \frac{||Ag|+1|}{2}$

▶ Succinct (but incomplete) representation: $\langle q; w_1, \ldots, w_n \rangle$

Shapley-Shubic power index

The **Shapley-Shubic power in index** is the Shapley value in yes/no games:

- Measures the power of the voter in this case
- ► Computation is NP-hard, no reasonable polynomial time approximation
- Checking emptiness of the core can be done in polynomial time (veto player)

It has counter-intuitive properties:

- ▶ In the weighted voting game $\langle 100; 99, 99, 1 \rangle$ all three voters have the same power $(\frac{1}{3})$
- ▶ Player with non-zero weight might nevertheless have no power, e.g., in $\langle 10; 6, 4, 2 \rangle$ third player is a **dummy player**
- ▶ But, by adding one player $\langle 10; 6, 4, 2, 8 \rangle$ third player's power increases

k-weighted Voting Games

Extension of weighted voting games:

- ⇒ k-weighted voting games
 - complete representation (in contrast to weighted voting games)
 - overall game: "conjunction" k of k different weighted voting games
 - ▶ Winning coalition: the one that wins in all component games

Relation to simple coalition games (Wooldridge, p. 285):

"Every simple game can be represented by a k-weighted voting game in which k is at most exponential in the number of players."

Real world relevance: the voting system of the enlarged European Union is a three-weighted voting game

10.6 Summary

■ Thanks

Summary

What we have learned today:

- Coalition formation
- ▶ The core of a coalition game
- ► The Shapley value
- Different representations for different types of games
 - General coalition games: induced subgraphs & marginal contribution nets
 - Simple games: (k-)weighted voting games
- ► The Shapley-Shubic power index of simple games

Next (on Friday!):

Coalition Games with Goals & Coalition Structure Formation

Acknowledgments

These lecture slides are based on the following resources:

- Dr. Michael Rovatsos, The University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/abs/ abs-timetable.html
- ► Michael Wooldridge: An Introduction to MultiAgent Systems, John Wiley & Sons, 2nd edition 2009.