
Multiagent Systems
10. Coalition Formation

B. Nebel, C. Becker-Asano, S. Wöl�

Albert-Ludwigs-Universität Freiburg

July 2, 2014

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 1 / 30



Multiagent Systems
July 2, 2014 � 10. Coalition Formation

10.1 Motivation

10.2 Terminology

10.3 Basics

10.4 Shapley value

10.5 Representation

10.6 Summary

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 2 / 30



Motivation

10.1 Motivation

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 2 / 30



Motivation

Motivation

Remember the prisoner's dilemma with the following payo� matrix:

Player 1

Player 2

C D

C 2, 2 0, 3

D 3, 0 1, 1

In games like this one cooperation is prevented, because:

I Binding agreements are not possible

I Utility is given directly to individuals as the result of individual action

How about real world situations?
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Motivation

Prisoner's dilemma & the real world

Theoretical problems:

I Binding agreements are not possible

I Utility is given directly to individuals as the result of individual action

Real world situation:

I Contracts can form binding agreements

I Utility is given to organizations/groups of people and not to
individuals

Under these circumstances cooperation becomes both possible and rational.
⇒ Cooperative game theory asks which contracts are meaningful
solutions among self-interested agents.
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Terminology

Terminology I
Setting:

I Ag = {1, . . . , n} agents (�nite, typically n > 2)
I Any subset C of Ag is called a coalition
I C = Ag is the grand coalition
I A cooperative game is a pair G = 〈Ag , ν〉
I ν : 2Ag → R is the characteristic function of the game
I ν(C ) is the maximum utility C can achieve, regardless of the

remaining agents' behaviors (outside of coalition C )
I A coalition with only one agent is a singleton coalition

Finally: individual actions, utilities, and the origin of ν do not matter,
i.e. they are assumed to be given.

Example:

I A game with Ag = {1, 2}
I Singleton coalitions ν({1}) = 5 and ν({2}) = 5
I Grand coalition ν({1, 2}) = 20
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Terminology

Terminology II

A simple coalition game:

I value of any coalition is either 0 (`loosing') or 1 (`winning')

I voting systems can be understood in terms of simple games

General questions now:

1. Which coalitions might be formed by rational agents?

2. How should payo� be reasonably divided between members of a
coalition?

⇒ Just as non-cooperative games had solution concepts (Nash-equilibria,
. . . ), cooperative games have theirs as well (Shapley value, . . . ).
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Basics

Three Stages of Cooperative Action

The cooperation lifecycle (Sandholm et al., 1999):

I Coalition structure generation:
I Asking which coalitions will form, concerned with stability
I For example, a productive agent has the incentive to defect from a

coalition with a lazy agent
I Necessary but not su�cient condition for establishment of a coalition

I Solving the optimization problem of each coalition:
I Decide on collective plans
I Maximize the collective utility of the coalition

I Dividing the value of the solution of each coalition:
I Concerned with fairness of contract
I How much an agent should receive based on her contribution

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 9 / 30



Basics

Outcome and Objections

Question: Which coalitions are stable?

I An outcome x = 〈x1, . . . , xk〉 for a coalition C in game 〈Ag , ν〉 is a
distribution of C 's utility to members of C

I Outcomes must be feasible (don't overspend) and e�cient don't
underspend) ⇒

∑
i∈C xi = ν(C )

I Example:
I Ag = {1, 2}, ν({1}) = 5, ν({2}) = 5, and ν({1, 2}) = 20
I Possible outcomes for Cgrand = {1, 2} are 〈20, 0〉, 〈19, 1〉, . . . , 〈1, 19〉,
〈0, 20〉

I C (e.g. a singleton coalition) objects to an outcome of a grand
coalition (e.g. 〈1, 19〉), if there is some outcome for C
(e.g. ν({1}) = 5) in which all members of C are strictly better o�

Formally: C ⊆ Ag object to x = 〈x1, . . . , xn〉 for the grand coalition, i�
there exists some outcome x ′ = 〈x ′1, . . . , x ′k〉 for C , such that x ′i > xi for all
i ∈ C
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Basics

The core

Answering the question �Is the grand coalition stable?� is the same as
asking:

Is the core non-empty?

The core
The core of a coalition game is the set of outcomes for the grand coalition
to which nobody has an objection.

Non-empty core ⇒ there exists some way that the grand coalition can
cooperate and distribute the resulting utility such that no (sub-)coalition
could do better by defecting.

Previous example?

Core contains all outcomes between 〈15, 5〉 and 〈5, 15〉 inclusive
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Basics

The core: problems

Despite the usefulness of the concept of the core, some problems arise:

I Sometimes the core is empty and to detect this all possible
coalitions need to be enumerated ⇒ with n agents, 2n−1 subsets /
coalitions need to be checked!

I Fairness is not considered, e.g. 〈5, 15〉 ∈ core, but all surplus goes to
one agent alone

Solution to second problem is considered next.
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10.4 Shapley value
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Shapley value

Shapley value (preliminaries)

Idea: To eliminate unfair outcomes, try to divide surplus according to each
agent's contribution

De�ne marginal contribution of i to C :

Marginal contribution

The marginal contribution µi (C ) of agent i to coalition C is de�ned as:
µi (C ) = ν(C ∪ {i})− ν(C )

Axioms any fair distribution should satisfy:

I Symmetry: if two agents contribute the same, then they should
receive same payo� (they are interchangeable)

I Dummy player: agents not adding any value to any coalition should
receive what they earn on their own

I Additivity: if two games are combined, then the value a player gets
should equal the sum of the values it receives in the individual games
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Shapley value

Shapley value

Shapley value

The Shapley value shi for agent i is de�ned as:

shi =
1

|Ag |!
∑

o∈
∏

(Ag)

µi (Ci (o))

I
∏
(Ag) denotes the set of all possible orderings, i.e. permutations, for

example, with Ag = {1, 2, 3}:∏
(Ag) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), . . .})

I Ci (o) denotes the set containing only those agents that appear before
agent i in o, for example, with o = {3, 1, 2): C3(o) = ∅ and
C2(o) = {1, 3}

I Requires that ν(∅) = 0 and ν(C ∪ C ′) ≥ ν(C ) + ν(C ′) if C ∩ C ′ = ∅
(i.e. ν must be superadditive)
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Shapley value

Shapley value: examples

Examples for calculations of the Shapley value:

1. Consider ν({1}) = 5, ν({2}) = 5, and ν({1, 2}) = 20:
I Intuition says to allocate 10 to each agent
I µ1(∅) = 5, µ2(∅) = 5, µ1({2}) = 15, µ2({1}) = 15
⇒ sh1 = sh2 = (5+ 15)/2 = 10 (same as intuition)

2. Consider ν({1}) = 5, ν({2}) = 10, and ν({1, 2}) = 20:
I µ1(∅) = 5, µ2(∅) = 10, µ1({2}) = ν({1, 2})− ν({2}) = 20− 10 = 10,
µ2({1}) = 20− 5 = 15
⇒ sh1 = (5+ 10)/2 = 7.5, sh2 = (10+ 15)/2 = 12.5

I Agent 2 contributes more than agent 1
⇒ receives higher payo�!
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Shapley value

Shapley value: a dummy player example

Finally, consider Ag = {1, 2, 3}, with ν({1}) = 5, ν({2}) = 5, ν({3}) = 5,
ν({1, 2}) = 10, ν({1, 3}) = 10, ν({2, 3}) = 20, and ν({1, 2, 3}) = 25:

I We have µ1(∅) = 5, µ2(∅) = 5, µ3(∅) = 5, µ1({2}) = 5, µ1({3}) = 5,
µ1({2, 3}) = 5, µ2({1}) = 5, µ2({3}) = 15, µ2({1, 3}) = 15,
µ3({2}) = 15, µ3({1, 2}) = 15.

I Agent 1 is a dummy player and its share should be sh1 = 5 (dummy
player axiom)

I sh2 = (5+ 5+ 15+ 15)/4 = 10 and similarly sh3 = 10.

Important: The Shapley value is the only value that satis�es the fairness
axioms
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Representation

10.5 Representation

Induced subgraphs
Marginal Contribution Nets
Simple games
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Representation

Computational and representational issues
Consider a naïve representation of a coalition game:

1, 2, 3

1 = 5

2 = 5

3 = 5

1, 2 = 10

1, 3 = 10

2, 3 = 20

1, 2, 3 = 25

This is infeasible, because it is exponential in the size of Ag !

⇒ succinct representation needed:

I Modular representations exploit Shapley's axioms directly

I Basic idea: divide the game into smaller games and exploit additivity
axiom
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Representation

Modular representations

Two modular representations will be discussed:

1. Induced subgraphs: a succinct, but incomplete representation

2. Marginal contribution nets: generalization of induced subgraphs,
complete, but in worst case not succinct
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Representation Induced subgraphs

Induced subgraphs
Idea: de�ne characteristic function ν(C ) by an undirected weighted graph

I Value of a coalition C ⊆ Ag : ν(C ) =
∑
{i ,j}⊆C wi ,j

Example:

A B

C D

3

1

4

2

5

ν({A,B,C}) = 3+ 2 = 5

ν({D}) = 5

ν({B,D}) = 1+ 5 = 6

ν({A,C}) = 2

I Not a complete representation

I But easy to compute the Shapley value for a given player in
polynomial time: shi =

1
2

∑
j 6=i wi ,j

⇒ Checking emptiness of the core is NP-complete, and membership to the
core is co-NP-complete
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Representation Marginal Contribution Nets

Marginal Contribution Nets I

Idea: represent characteristic function as a set of rules

pattern → value

1. Structure of the rules:
I pattern is conjunction of agents, e.g. 1 ∧ 3
I 1 ∧ 3 would apply to {1, 3} and {1, 3, 5}, but not to {1} or {8, 12}
I C |= φ: the rule φ→ x applies to coalition C
I rsC = {φ→ x ∈ rs | C |= φ}: the rules that apply to C

2. The characteristic function associated with the ruleset rs:

νrs(C ) =
∑

φ→x∈rsC

x
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Representation Marginal Contribution Nets

Marginal Contribution Nets II

Example:

I rs1 = {a ∧ b → 5, b → 2}
I νrs1({a}) = 0, νrs1({b})) = 2, and νrs1({a, b})) = 7

Extension:

I Allow negation in rules indicating the absence of agents instead of
their presence

I Example: with rs2 = {a ∧ b → 5, b → 2, c → 4, b ∧ ¬c → −2} we
have νrs2({b}) = 0 (2nd and 4th rule), and νrs2({b, c}) = 6 (2nd and
3rd rule)

General properties:

I Shapley value can be computed in polynomial time

I Complete representation, but not necessarily succinct
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Representation Simple games

Representations for Simple Games

Remember: A coalition game is simple, if the value of any coalition is
either zero (losing) or one (winning).

I Simple games model yes/no voting systems

I Y = 〈Ag ,W 〉, where W ⊆ 2Ag is the set of winning coalitions

I If C ∈W , coalition C would be able to determine the outcome, `yes'
or `no'

Important conditions:

I Non-triviality: ∅ ⊂W ⊂ 2Ag

I Monotonicity: if C1 ⊆ C2 and C1 ∈W then C2 ∈W

I Zero-sum: if C ∈W then Ag \ C 6∈W

I Empty coalition loses: ∅ 6∈W

I Grand coalition wins: Ag ∈W

Important: Naïve representation is exponential in the number of agents

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 24 / 30



Representation Simple games

Weighted Voting Games

Weighted voting games are an extension of simple games:

I For each agent i ∈ Ag de�ne a weight wi

I De�ne an overall quota q

I A coalition is winning if the sum of their weights exceeds the
quota:

ν(C ) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise

Example: Simple majority voting, wi = 1 and q = d|Ag |+1e
2

I Succinct (but incomplete) representation: 〈q;w1, . . . ,wn〉
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Representation Simple games

Shapley-Shubic power index

The Shapley-Shubic power in index is the Shapley value in yes/no
games:

I Measures the power of the voter in this case

I Computation is NP-hard, no reasonable polynomial time approximation

I Checking emptiness of the core can be done in polynomial time (veto
player)

It has counter-intuitive properties:

I In the weighted voting game 〈100; 99, 99, 1〉 all three voters have the
same power (1

3
)

I Player with non-zero weight might nevertheless have no power, e.g., in
〈10; 6, 4, 2〉 third player is a dummy player

I But, by adding one player 〈10; 6, 4, 2, 8〉 third player's power increases

B. Nebel, C. Becker-Asano, S. Wöl� (Universität Freiburg)Multiagent Systems July 2, 2014 26 / 30



Representation Simple games

k-weighted Voting Games

Extension of weighted voting games:
⇒ k-weighted voting games

I complete representation (in contrast to weighted voting games)

I overall game: �conjunction� k of k di�erent weighted voting games

I Winning coalition: the one that wins in all component games

Relation to simple coalition games (Wooldridge, p. 285):

�Every simple game can be represented by a k-weighted voting game in
which k is at most exponential in the number of players.�

Real world relevance: the voting system of the enlarged European
Union is a three-weighted voting game
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Summary

10.6 Summary

Thanks
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Summary

Summary

What we have learned today:

I Coalition formation

I The core of a coalition game

I The Shapley value

I Di�erent representations for di�erent types of games
I General coalition games: induced subgraphs & marginal contribution

nets
I Simple games: (k-)weighted voting games

I The Shapley-Shubic power index of simple games

Next (on Friday!):
Coalition Games with Goals & Coalition Structure Formation
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