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General information

Recommended reading:

Wooldridge, An Introduction to MultiAgent Systems -
Second Edition, Wiley & Sons, 2009.
Russell & Norvig, Arti�cial Intelligence: A Modern
Approach, third edition, Prentice Hall, 2010.
Bordini, Hübner, & Wooldridge, Programming Multi-Agent
Systems in AgentSpeak using Jason, Wiley & Sons, 2007

Software:

JASON: http://jason.sourceforge.net/wp/
Intro to ROS:
http://www.ros.org/wiki/ROS/Introduction
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Website

Up-to-date information

www.informatik.uni-
freiburg.de/�ki/teaching/ss14/multiagent-systems/
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What is an agent?

De�nition 2 (Wooldridge, p. 21)

An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in
this environment in order to meet its design objectives

Adds the notion of free will or intention to agent design

When explaining human activity, we use statements like
the following:

Janine took her umbrella because she believed it was
raining and she wanted to stay dry. (Wooldridge)

folk psychology used to explain human behavior based on
attitudes such as believing, wanting, hoping, fearing, . . .
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The (virtual) agent MAX

MAX, the Multimodal Assembly eXpert:

developed at the VR and AI group at Bielefeld University
since 2003
since 2007 promoted in the Cluster of Excellence CITEC

Figure: The MAX agent, taken from
http://www.excellence-initiative.com/

bielefeld-cognitive-interaction-technology
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Some applications of multiagent systems: MAX?

Two major areas of application:

Distributed systems (agents as processing nodes)

Personal software assistants (aiding the user)

A variety of subareas:

Work�ow/business process management

Distributed sensing

Information retrieval and management

Electronic commerce

Human-computer interfaces

Virtual environments

Social simulation

. . .

8 / 40



Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

General
information

Agents (once
again)

Agents as
intentional
systems

Abstract
Architectures
for Agents

Summary

Intentional Systems

Daniel Dennet coined the term intentional system to describe
entities �whose behavior can be predicted by the method of
attributing belief, desires and rational acumen�.
(Dennett, 1987; after Wooldridge, p. 31)

�A �rst-order intentional system has beliefs and desires (etc.)
but no beliefs and desires about beliefs and desires. . . . A
second-order intentional system is more sophisticated; it has
beliefs and desires (and no doubt other intentional states)
about beliefs and desires (and other intentional states) � both
those of others and its own.� (Dennet, 1987, p. 243)

9 / 40



Multiagent
Systems

B. Nebel,
C. Becker-
Asano,
S. Wöl�

General
information

Agents (once
again)

Agents as
intentional
systems

Abstract
Architectures
for Agents

Summary

Intentional stance applied to a light switch?

Intentional stance ⇒ ascribing beliefs, free will, intentions,

consciousness, abilities or wants to others, even to machines.

�It is perfectly coherent to treat a light switch as a (very
cooperative) agent with the capability of transmitting current at
will, who invariably transmits current when it believes that we
want it transmitted and not otherwise; �icking the switch is
simply our way of communicating our desires.�
But: �. . . it does not buy us anything, since we essentially
understand the mechanism su�ciently to have a simpler,
mechanistic description of its behavior.� (Yoav Shoham, 1990)
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So then, why Agents?

The more we know about a system, the less we need to
rely on animistic, intentional explanations of its behavior

But with very complex systems, a mechanistic explanation
may not be practicable

Thus, we use intentional notions as abstraction tools

providing us with a convenient and familiar way to
describe, explain, and predict the behavior of complex
systems

Abstractions commonly used in computer science:

procedural abstraction
abstract data types
objects

Agents and agents as intentional systems represent just
another powerful abstraction
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States and Actions

Assume the environment may be in any of a �nite set E of
discrete, instantaneous states:

E = {e, e′, . . .}.

Agents are assumed to have a repertoire of possible actions
available to them, which transform the state of the environment.

Ac = {α, α′, . . .}

A run, r , of an agent in an environment E is a sequence of
interleaved environment states and actions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ · · · αu−1−−−→ eu
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Runs

Let . . .

R be the set of all such possible �nite sequences (over E
and Ac);
RAc be the subset of these that end with an action; and
RE be the subset of these that end with an

environment state.

Then the state transformer function τ represents behavior of
the environment.

De�nition 3: State transformer function τ

The state transformer function τ maps each run r ∈ RAc to a
subset of E (even the empty set):

τ : RAc → P(E )

(from runs to environment states)

(with P(E) denoting the power set of E .)
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Environments

An environment Env is then de�ned as follows:

De�nition 4: Environments

An environment Env is given as the triple Env = 〈E , e0, τ〉
where

E is the set of environment states,

e0 ∈ E is the initial state, and

τ is the state transformer function.

Note that environments are:

history dependent

non-deterministic

If τ(r) = ∅, there are no possible successor states to r , so we
say the run has ended.
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Agents

De�nition 5: Agent Ag

An agent Ag is a function which maps any run r ∈ RE to an
action α ∈ Ac:

Ag : RE → Ac

(from runs to actions)

Agents choose actions depending on (environment) states

With AG de�ned as the set of all agents, a system is
de�ned as the pair (Ag ,Env) with Ag ∈ AG

Denote runs of a system by R(Ag ,Env) and assume they
are all terminate (and thus �nite)
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Behavioral equivalency

De�nition 6: Behavioral equivalence

Two agents Ag1 and Ag2 are called behavioral equivalent

with respect to environment Env i�

R(Ag1,Env) = R(Ag2,Env)

If this is true for any environment Env , then they are simply
called behaviorally equivalent
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Putting it all together now

Formally, a sequence

(eo, α0, e1, α1, e2, . . .)

represents a run of agent Ag in environment Env = 〈E , e0, τ〉
if:

1 e0 is the initial state of Env

2 α0 = Ag(e0); and

3 for u > 0,

eu ∈ τ((eo, α0, . . . , αu−1)) where

αu = Ag((e0, α0, . . . , eu))
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Purely reactive agents

A purely reactive agent:

bases its decision only on the present state of the
environment

does not take history into account

is an example of the �Behaviorist� model of activity, in that
actions are solely based on stimulus-response schemata

De�nition 7: Purely reactive agent

A purely reactive agent Agr maps the current state e ∈ E to an
action α ∈ Ac:

Agr : E → Ac
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Purely reactive agent example

Properties of purely reactive agents:

Every purely reactive agent can be mapped to an agent
de�ned on runs, i.e. a standard agent

The reverse is usually not true

Example: (old-style, non-NEST) thermostat

Two environment states e0 = "temperature OK" and
e1 = "temperature not OK"

Ag de�ned as:

Ag(e) =

{
heater o�, if e = e0

heater on, if e = e1
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Perception and action

Agent model so far rather simple, but still many design choices
need to be made to achieve concrete agent architectures

data structures?
operations on them?
control �ow?

Do you remember this Figure?

Figure: An agents interacts with an environment through sensors and
actuators (after Russel & Norvig, p. 35)
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Perception

Perception can be modeled as follows:

De�ne function see : E → Per and action : Per∗ → Ac
where:

Per is non-empty set of percepts that the agent can
obtain through its sensors
see describes process of perception and action de�nes
decisions based on percept sequences

Agent de�nition now becomes Ag = 〈see, action〉
If e1 6= e2 ∈ E and see(e1) = see(e2) we call e1 and e2

indistinguishable
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Perception example

Let x = 'the room temperature is OK' and
y = 'Merkel is chancelor' be the only two facts that
describe environment

Then we have E = {{¬x,¬y}︸ ︷︷ ︸
e1

, {¬x, y}︸ ︷︷ ︸
e2

, {x,¬y}︸ ︷︷ ︸
e3

, {x, y}︸ ︷︷ ︸
e4

}

If percepts of thermostat are p1 (too cold) and p2 (OK),
then indistinguishable states occur (unless Merkel makes
room chilly)

see(e) =

{
p1, if e = e1 ∨ e = e2

p2, if e = e3 ∨ e = e4

We write e ∼ e′ (equivalence relation over states)

The coarser these equivalence relations, the less e�ective is
perception (if | ∼ | = |E|, then the agent is omniscient)
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Perception and action, state-based agents (1)

Three new functions:
1 the see function, the agent's ability to perceive its

environment

De�nition 8: The see function

It maps environment states e ∈ E to percepts p ∈ Per :

see : E → Per

2 the action function to represent the agent's (internal)
decision making

De�nition 9: The action function

It maps internal states i ∈ I to actions α ∈ Ac:

action : I → Ac

3 a function next to update the agent's internal state-based
on the current percept
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Perception and actions, state-based agents (2)

De�nition 10: The next function

It maps an internal state iold ∈ I and a percept p ∈ Per to a
new internal state inew ∈ I :

next : I × Per → I

The behavior of a state-based agent is described as follows:

1 The agent starts in some initial state e0

2 After perceiving environment state e it generates a percept
p = see(e)

3 Its internal state is updated by next(i0, p)

4 Finally, the agent chooses an action calculating the result
of action(next(i0, p))

5 Loop!
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State-based agents

Figure: An agent that maintains a state (after Wooldrige, p. 37, and
Russel & Norvig, p. 35)

⇒ State-based agents are no more expressive than standard

agents. They are behaviorally equivalent!
(Wooldridge, p. 38)
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Task speci�cation & utility

Agents should perform a task on our behalf:

Task speci�ed by us

Tell agent what to do, but not how (exactly)

How can the agent choose among alternative actions?

⇒ Utility functions over states
The agent has to bring about states that maximize utility.
First possibility:

De�nition 11: Task speci�cation

A task speci�cation is a function u associating a real number
with every environment state:

u : E → R
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Utilities over Runs

With task speci�cation, what is the utility of a run?

minimum utility of visited states?

maximum utility of visited states?

Average utility of visited states?

. . .

Better idea:

De�nition 12: Utility over Runs

Utility is assigned to runs:

u : R → R

Takes a long term view and can be extended by incorporating
probabilities of di�erent states emerging into account.
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Problems with Utility-based Approaches

Certain problems have been discussed in the literature:

Where do the numbers come from?

People don't think in terms of utilities ⇒ di�cult to
specify tasks in these terms

Nevertheless, certain scenarios can be modeled with utilities.
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The Tileworld

Simulated two dimensional grid environment on which
there are agents, tiles, obstacles, and holes.

Agent can move in four directions, up, down, left, or right.

If agent is located next to a tile, it can push it.

Goal: Agent has to �ll as many holes with tiles as possible.

The more holes are �lled the higher the score.

TILEWORLD changes with random appearance and
disappearance of holes.

HOLE

↑
TILE

Ag TILE HOLE
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Utility in the Tileworld

Utility function de�ned as follows:

u(r) =
number of holes �lled in r

number of holes that appeared in r

Thus:

If agent �lls all holes → utility = 1.

If agent �lls no holes → utility = 0.
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Expected Utility of an agent

Let P (r|Ag ,Env) denote the probability that run r occurs
when agent Ag is placed in environment Env .
Note: ∑

r∈R(Ag,Env)

P (r|Ag ,Env) = 1

De�nition 13: Expected utility over runs

The expected utility EU of an agent Ag in environment Env
(given P , u) is:

EU(Ag ,Env) =
∑

r∈R(Ag,Env)

u(r)P (r|Ag ,Env).
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Optimal agents

Now we can de�ne the optimal agent in an environment Env.

De�nition 14: The Optimal Agent

The optimal agent Agopt in an environment Env is de�ned as
the one that maximizes expected utility:

Agopt = arg max
Ag∈AG

EU(Ag,Env)

Of course, the fact that it is optimal does not mean it will
always be best; only that on average, we can expect it to do
best.
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Bounded optimal agents

Not every conceivable function Ag : RE → Ac can be
implemented on a machine.
⇒ De�ne the class of bounded optimal agents:

De�nition 15: Bounded optimal agents

Let
AGm = {Ag|Ag ∈ AG ∧Ag implementable on machine m}.
Then the bounded optimal agent, Agbopt, is de�ned with
respect to m:

Agbopt = arg max
Ag∈AGm

EU(Ag,Env)
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Predicate task speci�cations

Often more natural to de�ne a predicate over runs:

Idea: only assign success or failure to runs
Assume u ranges over {0, 1}, then run r ∈ R satis�es a
task speci�cation if u(r) = 1, else it fails

De�ne:

Ψ(r) i� u(r) = 1 and task environment 〈Env,Ψ〉 with
T E the set of all task environments
Let RΨ(Ag,Env) = {r|r ∈ R(Ag,Env) ∧Ψ(r)} be the
set of runs of agent Ag that satisfy Ψ

Ag succeeded in task environment 〈Env,Ψ〉 i�
RΨ(Ag,Env) = R(Ag,Env)
More optimistic, we may just require that
∃r ∈ R(Ag,Env) such that Ψ(r)

Extend state transformer function by probabilities, then:

P (Ψ|Ag,Env) =
∑

r∈RΨ(Ag,Env)

P (r|Ag,Env)
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Achievement and maintenance tasks

Two very common types of tasks:

�achieve state of a�airs ϕ�

�maintain state of a�airs ϕ�

Achievement tasks:

are de�ned by a set of good states G ⊆ E.
The agent succeeds if it is guaranteed to bring about at
least one of these states.

Maintenance tasks:

are de�ned by a set of bad states B ⊆ E.
The agent succeeds if it manages to avoid all states in B.

More complex combinations exist.
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Discussed intentional stance & agents

Introduced abstract agent architectures

Environments, perception & action

Purely reactive agents & agents with state

Utility-based agents

Task-based agents, achievement & maintenance tasks

⇒ Next time: Deductive reasoning agents
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