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Exercise 5.1 (Predicate Logic)

Consider following colloquial sentences:

(a) Not all students attend AI and ST.

(b) One student failed both AI and ST.

(c) Exactly two students failed ST.

(d) There is a barber who shaves all men in town who do not shave themselves.

(e) No one likes a professor who is not smart.

Represent these sentences in first-order logic using the predicates student(x), at-
tends(x,y), fails(x,y), barber(x), shaves(x,y), professor(x), likes(x,y) und smart(x).

Exercise 5.2 (Semantics of Predicate Logic)

Consider the Interpretation I =< D, ·I > with

• D = {0, 1, 2, 3}

• evenI = {0, 2}

• oddI = {1, 3}

• lessThanI = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}

• twoI = 2

• plusI : D ×D → D, plusI(a, b) = (a+ b) mod 4

and the variable assignment α = {(x, 0), (y, 1)}.
Decide for the following formulae θi if I is a model for θi under α, i.e. if I, α |= θi.
Explain your answer.

(a) θ1 = odd(y) ∧ even(two)

(b) θ2 = ∀x (even(x) ∨ odd(x))

(c) θ3 = ∀x∃y lessThan(x, y)

(d) θ4 = ∀x (even(x) ⇒ ∃y lessThan(x, y))

(e) θ5 = ∀x (odd(x) ⇒ even(plus(x, y)))



Exercise 5.3

(a) Transform the following formula into Skolem Normal Form (SNF):

∀z∃y(P (x, g(y), z) ∨ ¬∀xQ(x)) ∧ ¬∀z∃x∀t¬R(f(x, z), z, t)

(b) Give the 10 smallest terms in the Herbrand universe and the 10 smallest
formulae in the Herbrand expansion of the following formula:

∀x∀yP (c, f(x, b), g(y))

Exercise 5.4 (Substitutions and Unification)

(a) Compute the substitutions

(i) P (x, y){ x
A
, y
f(B)},

(ii) P (x, y){ x
f(y)}{

y
g(B,B)},

(iii) P (x, y){ x
f(y) ,

y
g(B,B)} and

(iv) P (x, y){ z
f(B) ,

x
A
}

(b) Apply the unification algorithm to the following set of literals:

{R(h(x), f(h(u), y)), R(y, f(y, h(g(A))))}

In each step, give the values of Tk, sk, Dk, vk, and tk.

Exercise 5.5 (Allen’s Interval Calculus)

(a) Consider the non-empty intervals Match, GoalShot, Cheering und Final-
Whistle together with the constraints

(i) FinalWhistle f Match
(ii) GoalShot m Cheering

(iii) GoalShot (d,f ) Match
(iv) GoalShot (<,m) FinalWhistle

Which of the following relations are entailed?

(a) GoalShot d Match
(b) Cheering d Match

(b) In general, the composition of two binary relations R and S (over X) is
defined as

R ◦ S = {(x, z) | ∃y ∈ X such that (x, y) ∈ R and (y, z) ∈ S}.

Allen’s interval calculus is closed under composition which means that
every composition of Allen relations (also for unions of the 13 base rela-
tions) can be represented as union of base relations. For example, f ◦s = d

because for arbitrary intervals A,B and C with AfB and BsC it must
hold that AdC. Note that in general the composition of two base rela-
tions needs not to result in a single base relation, as you can see from the
example f−1 ◦ d = (o, d, s). Determine the following compositions:

(1) o ◦m



(2) m ◦ f

(3) (o, f−1) ◦ f

The exercise sheets may and should be worked on in groups of three (3) students.
Please write all your names and the number of your exercise group on your
solution.


