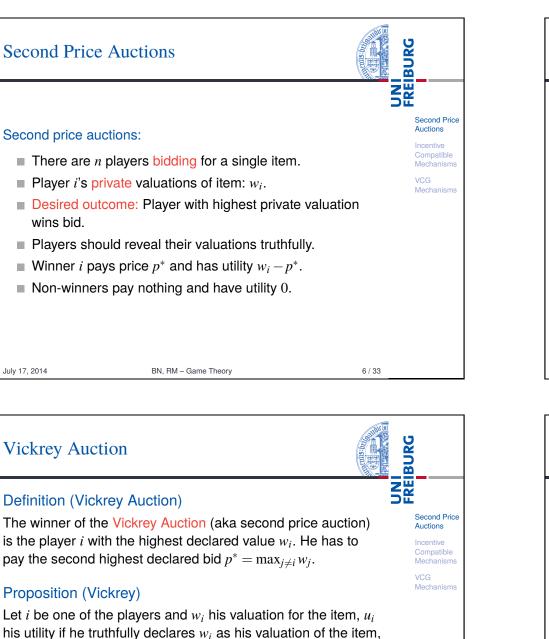
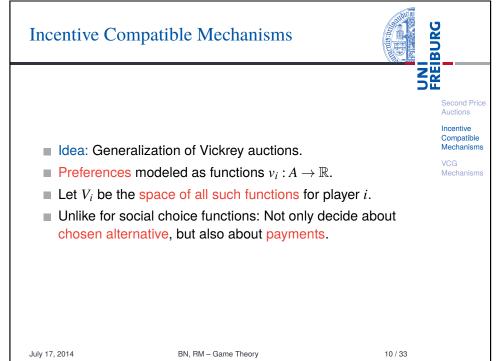


Second Price Auctions



BURG Second Price Auctions **FREI** Second Price Formally: Auctions A = Nif a = iWi VCG $\mathbf{v}_i(a) =$ Mechanisms else ■ What about payments? Say player *i* wins: \square $p^* = 0$ (winner pays nothing): bad idea, players would manipulate and publicly declare values $w'_i \gg w_i$. **p^* = w_i** (winner pays his valuation): bad idea, players would manipulate and publicly declare values $w'_i = w_i - \varepsilon$. **better**: $p^* = \max_{i \neq i} w_i$ (winner pays second highest bid). BN, RM - Game Theory 7/33 July 17, 2014



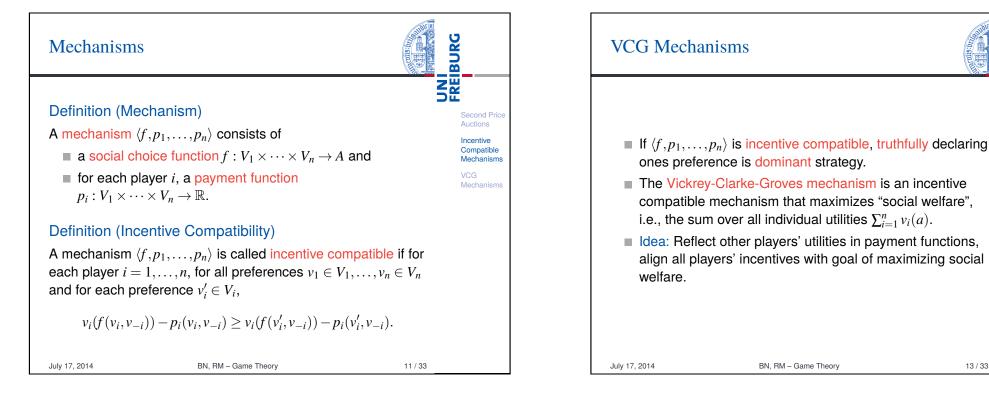
Proof See

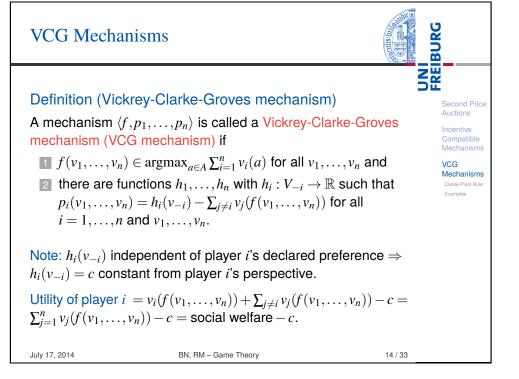
item. Then $u_i \ge u'_i$.

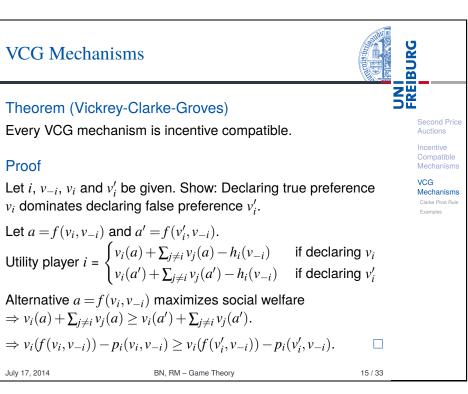
8/33

and u'_i his utility if he falsely declares w'_i as his valuation of the

http://en.wikipedia.org/wiki/Vickrey auction.







BURG

FREI

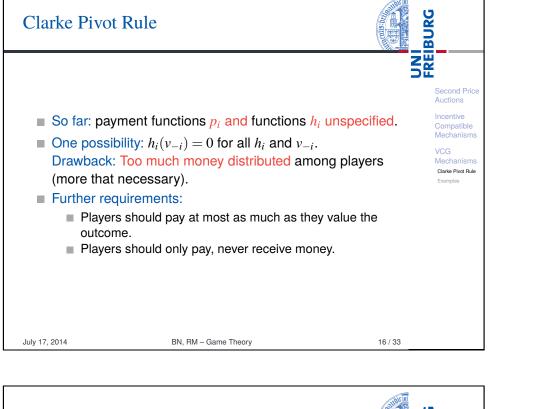
13/33

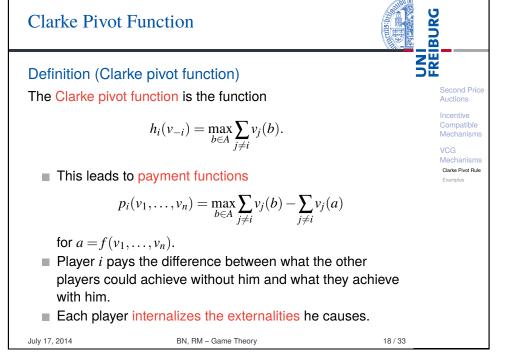
Second Price

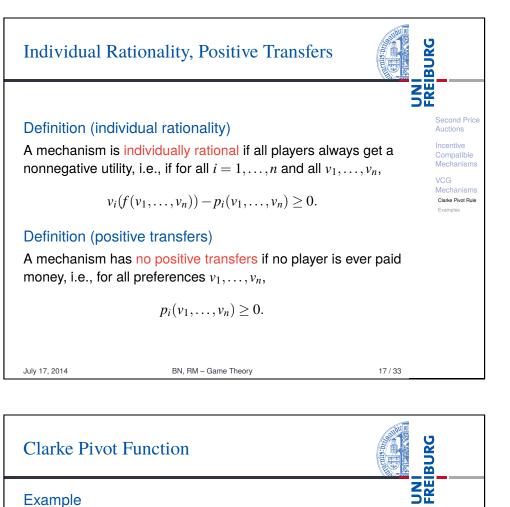
Auctions

VCG

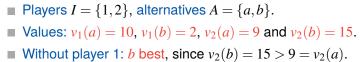
Mechanisms







Example



■ With player 1: *a* best, since $v_1(a) + v_2(a) = 10 + 9 = 19 > 17 = 2 + 15 = v_1(b) + v_2(b).$ ■ With player 1, other players (i.e., player 2) lose

- $v_2(b) v_2(a) = 6$ units of utility.
- \Rightarrow Clarke pivot function $h_1(v_2) = 15$
- \Rightarrow payment function

$$p_1(v_1, \dots, v_n) = \max_{b \in A} \sum_{j \neq 1} v_j(b) - \sum_{j \neq 1} v_j(a) = 15 - 9 = 6.$$

July 17, 2014 BN, RM - Game Theory

19/33

Second Price

Auctions

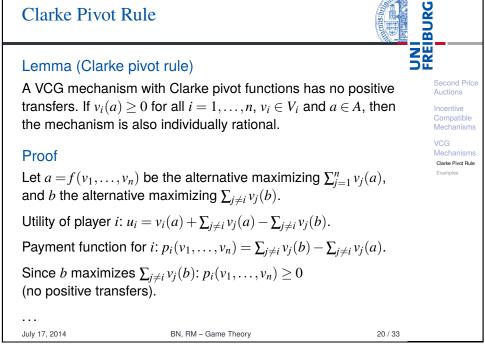
VCG

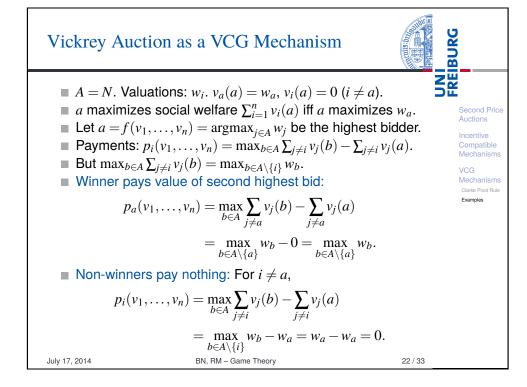
Mechanisms

Clarke Pivot Rule

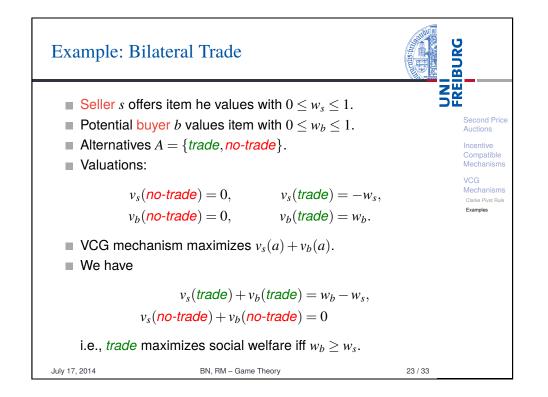
Examples

Clarke Pivot Rule





BURG **Clarke Pivot Rule FREI** Proof (ctd.) Second Pric Individual rationality: Since $v_i(b) \ge 0$, Auctions $u_i = v_i(a) + \sum_{i \neq i} v_j(a) - \sum_{i \neq i} v_j(b) \ge \sum_{i=1}^n v_j(a) - \sum_{i=1}^n v_j(b).$ Mechanisms Clarke Pivot Bule Since *a* maximizes $\sum_{i=1}^{n} v_i(a)$, $\sum_{j=1}^{n} v_j(a) \ge \sum_{j=1}^{n} v_j(b)$ and hence $u_i > 0$. Therefore, the mechanism is also individually rational. July 17, 2014 21/33 BN, RM - Game Theory



Example: Bilateral Trade (ctd.)

24/33

Mechanisms

Mechanisms

Examples

Requirement: if *no-trade* is chosen, neither player pays anything:

$$p_s(v_s,v_b)=p_b(v_s,v_b)=0$$

To that end, choose Clarke pivot function for buyer:

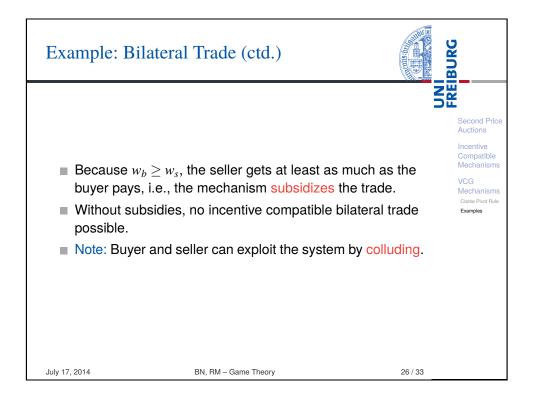
$$h_b(v_s) = \max_{a \in A} v_s(a).$$

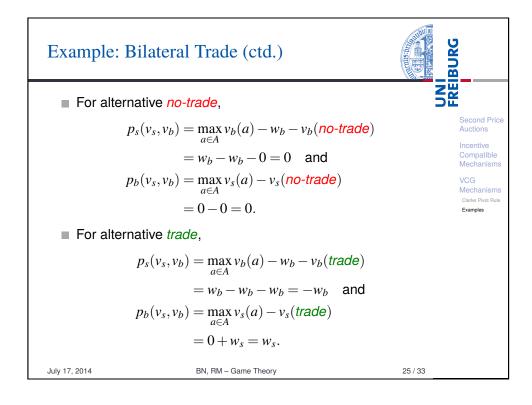
For seller: Modify Clarke pivot function by an additive constant and set

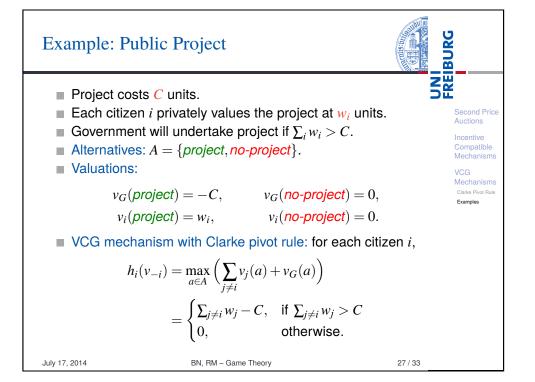
$$h_s(v_b) = \max_{a \in A} v_b(a) - w_b.$$

July 17, 2014

BN, RM – Game Theory







Example: Public Project (ctd.)

BURG **FREI** Citizen *i* pivotal if $\sum_i w_i > C$ and $\sum_{i \neq i} w_i \leq C$. Payment function for citizen i: Second Pric Auctions $p_i(v_{1..n}, v_G) = h_i(v_{-i}) - \left(\sum_{i \neq i} v_j(f(v_{1..n}, v_G)) + v_G(f(v_{1..n}, v_G))\right)$ Compatible Mechanisms Mechanism Case 1: Project undertaken, i pivotal: Examples $p_i(v_{1..n}, v_G) = 0 - \left(\sum_{i \neq i} w_j - C\right) = C - \sum_{i \neq i} w_i$ Case 2: Project undertaken, i not pivotal: $p_i(v_{1..n}, v_G) = \left(\sum_{i \neq j} w_j - C\right) - \left(\sum_{i \neq j} w_j - C\right) = 0$ Case 3: Project not undertaken: $p_i(v_{1,n}, v_G) = 0$ 28/33 July 17, 2014 BN, RM - Game Theory

