Introduction to Game Theory

B. Nebel, R. MattmüllerT. SchulteSummer semester 2014

University of Freiburg Department of Computer Science

Exercise Sheet 5 Due: Thursday, June 19th, 2014

Exercise 5.1 (Linear Complementary Problem, 1 + 3 points)

Consider the strategic game
$$G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$$
, with

- $N = \{1, 2\},$
- $A_1 = A_2 = \{r_1, r_2, r_3\}$ and
- utility functions u_1, u_2 as given by the following payoff matrix.

		Player 2		
		r_1	r_2	r3
Player 1	r_1	0, 0	3,1	3,3
	r_2	1, 1	0,0	1,3
	r_3	1, 1	1, 1	0, 0

- (a) Determine all pure strategy Nash equilibria for this game.
- (b) Determine the mixed strategy Nash equilibria for this game. Proceed as follows:
 - 1. Formulate the corresponding LCP.
 - 2. Convert the LCP into a linear program with the following pair of support sets: $(supp(\alpha), supp(\beta)) = (\{r_1, r_2, r_3\}, \{r_1, r_2, r_3\}).$
 - 3. Solve the linear program and provide values for each $\alpha(r_i)$ and $\beta(r_i)$, $i \in \{1, 2, 3\}$.
- (c) What is the expected payoff (u, v) of the NE computed above?

Exercise 5.2 (Naive Algorithm for solving LCPs, 2 + 2 points)

The picnic game consists of two players who have to choose one of five popular picnic places p_1, \ldots, p_5 . The decision is made independent from each other and the utilities are defined as follows: For i = j the payoffs for both players are 0. For all other strategy profiles (p_i, p_j) the first players payoff is i and the second players payoff is j.

- (a) Formalise the picnic game as a strategic game and formulate the corresponding LCP.
- (b) Implement the naive algorithm for solving LCPs and determine five different Nash equilibria for the picnic game. Use lp_solve, to solve the linear programs of the resulting sub-problems. Please only provide the five NEs on your exercise sheet and submit your program files to Tim Schulte (schultet@informatik.uni-freiburg.de). If you want to use another language than C, C++, Java or Python, contact us first.