Game theory

B. Nebel, S. Wölfl, R. Mattmüller C. Becker-Asano, Y. Alkhazraji Summer term 2013 University of Freiburg Department of Computer Science

Exercise Sheet 9 Due: Monday, July 1, 2013

Exercise 9.1 (Chance moves, 4 points)

Show that substituting one player's moves by chance moves can be beneficial for him or her in a two-player strategic game.

Formally: Define an extensive game $\Gamma = \langle N, H, \rho, (u_i)_{i \in N} \rangle$ and and an extensive game with chance moves $\Gamma' = \langle N, H, \rho', f'_c, (u_i)_{i \in N} \rangle$. The only difference between these two games should be that in Γ' the moves of only one player $i \in N$ are substituted by chance moves with uniform probability. Furthermore, player i receives a higher payoff in all subgame perfect equilibria of Γ' as compared to those of Γ .

Note: There are examples with only two non-terminal histories.

Exercise 9.2 (Chain store game with two repetitions, 1+1+2 points)

The Chain store game with two repetitions has three players: the chain store owner L and two potential competitors K_1 and K_2 . The game proceeds as follows:

- First, K_1 decides whether he opens a shop (Y) or not (N).
- If K_1 opens a shop, L decides, whether to react aggressively (A) or passively (P).
- After K_1 and, if applicable, also L have decided, the same decision process repeats with K_2 instead of K_1 .

If K_i does not open a shop, his payoff is 0. If he opens a shop, his payoff is -2, if L reacts aggressively, otherwise it is +2.

The payoff for player L is +6, if none of the other two players opens a shop. For every shop the other players open his payoff is reduced by 2 and for every aggressive action additionally by 1.

- (a) Draw the game tree for the Chain Store Game with two repetitions.
- (b) Determine a subgame perfect equilibrium.
- (c) Determine a Nash equilibrium, which is not a subgame perfect equilibrium and results in a payoff that is different from that of the equilibrium determined in part (b).