
Project sheet 4: Backjumping and Stochastic
Local Search (30 points)

Prof. Dr. Bernhard Nebel, Dr. Stefan Wölfl,
Dr. Julien Hué, and Matthias Westphal

July 2, 2012

The code must be handed in by July, 16 in the git repository as usual.

1 Gaschnig’s backjumping (10 points)
For this project, you will implement a simple version of gaschnig’s backjumping (with-
out Arc- or Path-Consistency). It is somehow simple to implement and the pseudocode
for the implementation (as it appears in the Rina Dechter’s book) is given here:

Algorithm 1: GASCHNIG’S BACKJUMPING
Input: A constraint NetworkR = {X,D,C}
Output: Either a solution, or a decision that the network is inconsistent

i← 11

D′
i ← Di2

latesti ← 03

while 1 ≤ i ≤ n do4

instantiate xi ← SELECT-VALUE-GBJ5

if xi = NULL then6

i← latesti7

else8

i← i+ 19

D′
i ← Di10

latesti ← 011

if i = 0 then12

return inconsistent13

else14

return A total assignment15

Gaschnig uses a marking technique to compute culprit. Each variable xj maintains
a pointer (latestj) to the latest ancestor incompatible with any of its values. When

1

all the values from a domain have been tried, the algorithm backtracks to this latesti
variable otherwise it behaves like a Backtrack algorithm.

The other change concerns the function where the value is selected: each time a
value is likely to be given the GASCHNIG’S BACKJUMPING algorithm, its consis-
tency with respect to the assignment is tested. If it is consistent then it is returned. If
it is not consistent, the smallest prefix partial assignment that is contradictory with the
value is computed and the latesti variable is changed accordingly (namely it is bigger
than the previous latesti).

We remind that ~ak denotes the partial assignment from x1 to xk.

Algorithm 2: SELECT-VALUE-GBJ
Input: R = {X,D,C}: a constraint Network
Output: Either a solution, or a decision that the network is inconsistent

while D′
i 6= ∅ do1

select an arbitrary element a ∈ D′
i are remove a from D′

i2

cons← true3

k ← 14

while k < i and cons do5

if k > latesti then6

latesti ← k7

if not consistent(~ak, xi = a) then8

cons← false9

else10

k ← k + 111

if cons then12

return a13

return NULL14

1.1 Command Line
Your solver (providing the executable name is ./solver) should run the backjumping
procedure thanks to the command:

./solver --backjumping

Please note that this algorithm (under the present form) is not compatible with
Consistency-Checking procedures. So please check that the command line does not
allow both.

2

2 RandomWalk (10 points)
For this project you will implement a version of the SLS local search procedure using
RandomWalk. The algorithm is given below. ~b represents the best solution yet, it
may be instantiated with a random total assignment run as a preprocess. The function
Score(C,~a) which takes a set of constraints and a total assignement as parameters
returns the number of violated constraints.

Algorithm 3: RANDOM-WALK
Input: R = {X,D,C}: a constraint Network , MAX TRIES and MAX FLIPS:

integers, p: a real number in [0, 1]
Output: Either a solution, or a decision that the network is inconsistent

for i← 1 to MAX TRIES do1

~a← a random assignment2

if score(C,~a) < score(C,~b) then3
~b← ~a4

for j ← 1 to MAX FLIPS do5

if ~a is a solution then6

return ~a7

else8

C ← a random violated constraint9

r ← a random real number [0, 1]10

if r < p then11

〈x, a′〉 ← a random pair variable-value where x ∈ scope(C)12

(and which is different from the current assignment)
else13

〈x, a′〉 ← a pair variable-value where x ∈ scope(C) and which14

minimizes the number of new constraints break by the
assgnment of x to a′ (and which is different from the current
assignment)

Assign the value a′ to x15

return~b16

Basically, the algorithm is allowed to perform a certain amount of tries (represented
by MAX TRIES). For each try, it starts by generating a random total assignment. If
this assignment is a solution it is returned otherwise a change is made. If this change
leads to a solution it is returned otherwise another is made (and so on. . . MAX FLIPS
times). This change is performed according to randomness factor p:

• with probability p: make a random change in the assignment

• with probability 1 − p: make a greedy change in a variable that minimizes the
number of newly violated constraints (constraints that were not violated in the

3

previous assignment and which will be violated if the new value is picked). Note
that nothing is said about the reduction of the number of formerly violated con-
straints.

2.1 Command Line
Your solver (providing the executable name is ./solver) should run the RandomWalk
procedure thanks to the command:

./solver --randomwalk=X,Y,Z

where X will be interpreted as MAX TRIES and Y will be interpreted as MAX FLIPS
and Z is an integer expressing p in percentage (i.e., p = Z/100).

Please note that this algorithm is not compatible with any other of the options (Con-
sistency checking or backjumping or heuristics)

3 Evaluation
3.1 Backjumping (3 points)
Add into your repository the file backjumping.txt (dont forget git add backjumping.txt).
This file must contain a table with the running times of the instances we provided with
the max-cardinality heuristics. It should compare the running times of:

• the backtracking procedure with Maintaining Arc Consistency;

• Gaschnig’s backjumping procedure;

• Simple backtracking procedure.

We suggest to put a time limit of 5 minutes to your tests thanks to the ulimit command.
After the table, write a short text (400-600 characters) commenting and comparing

the results in the table.

3.2 RandomWalk (7 points)
Add into your repository the file randomwalk.txt (dont forget git add randomwalk.txt).
You should perform a study of the parameters of the RandomWalk implementation you
made based on the instances we provided in the newly created directory randomwalk-
instances. The randomwalk.txt should aim at finding the best Z (or p) parameter for
these implementation. You will thus need to run the provided instances (and provide
the running times) for several possible value of X,Y and Z with the instances we
provided. The study should address the following problems:

• Is the best value of Z depending on X,Y ? (Is this value moving when X or Y
is different?)

• Is the best value of Z depending on the size of the instances?

Choose what is from your point of view the more appropriate value of p and explain
your choice.

4

	Gaschnig's backjumping (10 points)
	Command Line

	RandomWalk (10 points)
	Command Line

	Evaluation
	Backjumping (3 points)
	RandomWalk (7 points)

