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Quantitative vs. qualitative representations

Spatio-temporal configurations
can be described quantitatively
by specifying the coordinates of
the relevant objects:

Example: At time point 10.0

object A is at position

(11.0, 1.0, 23.7), at time point 11.0

at position (15.2, 3.5, 23.7). From

time point 0.0 to 11.0, object B is

at position (15.2, 3.5, 23.7). Object

C is at time point 11.0 at position

(300.9, 25.6, 200.0) and at time

point 35.0 at (11.0, 1.0, 23.7).

Often, however, a qualitative
description (using a finite
vocabulary) is more adequate:

Example: Object A hit object

B. Afterwards, object C arrived.

Sometimes we want to reason
with such descriptions.

Example: Object C was not

close to object A, when it hit

object B.
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Representation of qualitative knowledge

Intention: describe configurations in an infinite (continuous)
domain using a finite vocabulary and reason about these
descriptions

Specification of a vocabulary: usually a finite set of
relations (often binary) that are pairwise disjoint and
jointly exhaustive

Specification of a language: often sets of atomic formulae
(constraint networks), perhaps restricted disjunction

Specification of a formal semantics

Analysis of computational properties and design of
reasoning methods (often constraint propagation)

Perhaps, specification of operational semantics for
verifying whether a relation holds in a given quantitative
configuration
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and Wölfl

Motivation

Qualitative CSP

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

Literature

Applications in . . .

Natural language processing

Specification of abstract spatio-temporal configurations

Query languages for spatio-temporal information systems

Layout descriptions of documents (and learning of such
layouts)

Action planning

. . .
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Example: Qualitative temporal relations

Suppose, we want to talk about time instants (points) and
binary relations over them.

Vocabulary: X = Y (X equals Y ), X < Y (X before Y ),
and X > Y (X after Y ).

Language:
Allow for disjunctions of basic relations to express
indefinite information. Use unions of relations to express
that. For instance, < ∪ = expresses ≤.
23 different relations (including the impossible and the
universal relation)
Use sets of atomic formulae with these relations to
describe configurations. For example:{

x = y, y (< ∪ >) z
}

Semantics: Interpret the time point symbols and relation
symbols over the real (or rational) numbers.
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Some reasoning problems

{
x (< ∪ =) y, y (< ∪ =) z, v (< ∪ =) y, w > y, z (< ∪ =)x

}
Satisfiability: Are there values for all time points such that
all formulae are satisfied?

Satisfiability with v = w?

Finding a satisfying instantiation of all time points

Deduction: Does x{=}y follow logically?
Does v ≤ w follow?

Finding a minimal description: What are the most
constrained relations that describe the same set of
instantiations?
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From a logical point of view . . .

In general, qualitatively described configurations are simple
logical theories:

Only sets of atomic formulae to describe the configuration

Only existentially quantified variables (or constants)

A fixed background theory that describes the semantics of
the relations (e.g., dense linear orders)

We are interested in satisfiability, model finding, and
deduction
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Let B be a finite set of (binary) relations on some (infinite)
domain D (elements of B are called base relations).
We require:

The relations in B are JEPD, i.e., jointly exhaustive and
pairwise disjoint.
B is closed under converses.

Then:

Let A be the set of relations that can be built by taking
the unions of relations from B ( 2|B| different relations).
A is closed under converse, complement, intersection and
union.

Often, A is closed under composition of base relations,
i.e., for all B,B′ ∈ B,

B ◦B′ ∈ A.
Then, A is closed under composition of arbitrary relations.

But often this condition is not satisfied.
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Computing operations on relations

Let A be the system of relations over a set of base relations B that
satisfies all the conditions above.
We may write relations as sets of base relations:

B1 ∪ · · · ∪Bn
∼= {B1, . . . , Bn}

Then the operations on the relations can be computed as follows:

Composition:

{B1, . . . Bn} ◦ {B′1, . . . , B′m} =

n⋃
i=1

m⋃
j=1

Bi ◦B′j

Converse:
{B1, . . . , Bn}−1 = {B−11 , . . . , B−1n }

Complement:
{B1, . . . , Bn} = {B ∈ B : B 6= Bi, for each 1 ≤ i ≤ n}

Intersection and union are defined in the usual set-theoretical way.
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Reasoning problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

Given in addition xRy: Is xRy satisfied in each solution of
the CSP?

Computation of an equivalent minimal CSPs (CMIN):

Compute for each pair x, y of variables the strongest
constrained (minimal) relation entailed by the CSP.
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Reductions between CSP problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial
Turing reductions.

Proof.

CSAT ≤T CENT and CENT ≤T CMIN are obvious.

CENT ≤T CSAT: We solve CENT (CSP |= xRy?) by testing
satisfiability of the CSP extended by x{B}y where B ranges over all
base relations. Let B1, . . . , Bk be the relations for which we get a
positive answer. Then x{B1, . . . , Bk}y is entailed by the CSP.

CMIN ≤T CENT: We use entailment for computing the minimal
constraint for each pair of variables. Starting with the universal
relation, we remove one base relation until we have a minimal
relation that is still entailed.
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The Path Consistency Method

Given a qualitative CSP with Rv1,v2 = R−1
v2,v1 . Then the path

consistency method is to apply the operation

Rv1,v2 ← Rv1,v2 ∩ (Rv1,v3 ◦Rv3,v2).

on all the constraints of the network until a fixpoint is reached.

The path consistency method guarantees . . .

sometimes minimality

sometimes satisfiability

however sometimes the CSP is not satisfiable, even if the
CSP contains only base relations
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Example: Point relations

Composition table:

< = >

< < < <,=, >

= < = >

> <,=, > > >

Figure: Composition table for the point algebra. For example:
{<} ◦ {=} = {<}

{<,=} ◦ {<} = {<}
{<,>} ◦ {<} = {<,=, >}
{<,=}−1 = {>,=}
{<,=} ∩ {>,=} = {=}
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Some properties of the point relations

Theorem

A path consistent CSP over the point relations is satisfiable.

In particular, the path consistency method decides satisfiability.

Theorem

A path consistent CSP over all point relations without {<,>}
is minimal.

Proofs later . . .
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Languages
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Qualitative constraint languages

From now on, let D be a finite or infinite domain.

Definition

A partition scheme on D is any non-empty, finite set ∆ of
binary relations on D such that:

∆ defines a partition of D ×D.

∆ contains the binary identity relation idD.

∆ is closed under converses.

Definition

A constraint language of binary relations on D, Γ, is said to be
generated from a partition scheme ∆, if Γ consists of all finite
unions of relations in ∆.

Constraint languages in this sense will be referred to as
qualitative constraint languages.
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Qualitative constraint network

Let Γ be a subset of a qualitative constraint language with
partition scheme ∆.

Definition

A qualitative constraint network over Γ is a triple

P = 〈V,D,C〉 ,

where:

V is a non-empty and finite set of variables,

D is an arbitrary non-empty set (domain),

C is a finite set of constraints C1, . . . , Cq, i.e., each
constraint Ci is a pair (si, Ri), where si is a pair of
variables and Ri is a binary relation contained in Γ.
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Weak composition

Let Γ be a qualitative constraint language with partition
scheme ∆. For R,S ∈ Γ, define:

R ◦w S :=
⋃
{T ∈ ∆ : T ∩ (R ◦ S) 6= ∅}

— ◦w is called weak composition of R and S.

Lemma

For all relations R,S, T ∈ Γ,

R ◦ S ⊆ R ◦w S;

T ∩ (R ◦ S) = ∅ if and only if T ∩ (R ◦w S) = ∅;
(R ◦w S)−1 = S−1 ◦w R−1;

R ◦w (S ∪ T ) = (R ◦w S) ∪ (R ◦w T ).
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Weak composition: Examples

Example:
Consider a linear order on a domain with 2 elements a < b. The
relations R<, R=, R> define a partition schema on D. It holds:

R< ◦R< = R> ◦R> = ∅, R< ◦R> = {(a, a)}, R> ◦R< = {(b, b)}

but

R< ◦w R< = R> ◦w R> = ∅, R< ◦w R> = R=, R> ◦w R< = R=

Moreover,

(R<◦wR>)◦wR> = R=◦wR> = R> 6= ∅ = R<◦w∅ = R<◦w(R>◦wR>).

Example:
Consider a linear order on a domain with 3 elements a < b < c. Then

R< ◦R< = {(a, c)} but R< ◦w R< = R<.
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Qualitative languages and algebras

Let Γ be a qualitative constraint language with partition
scheme ∆. As spelled out before, each relation R in Γ can be
represented by a finite disjunction of “base relations”
B1, . . . , Bk ∈ ∆. In what follows we identify R with the set of
its base relations

{B1, . . . , Bk} .

Lemma

For each partition scheme ∆, the tuple〈
2∆,∩,∪, ◦w,C∆,

−1, ∅,∆, id∆

〉
defines a non-associative relation algebra.
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Algebraically closed networks

A qualitative network P = 〈V,D,C〉 is normalized, if

for each pair of variables x, y, C contains at least one
constraint ((x, y), R);
for each constraint ((x, x), R) in C, R = idD;
for constraints ((x, y), R) and ((y, x), S) in C, R = S−1.

In what follows we will always assume that constraint networks
are normalized.

Definition

A qualitative constraint network P is algebraically closed (or:
a-closed), if for all constraints ((x, y), R), ((x, z), S), and
((z, y), T ) of P , it holds:

R ⊆ S ◦w T.

Note: If P is algebraically closed, then R = R ∩ (S ◦w T ).
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Constraint propagation

The path consistency algorithm can only be used if the
underlying partition scheme is closed under composition, i.e., if
for each pair of relations R,S ∈ ∆, R ◦ S is a (finite) union of
a subset of ∆.
The algebraic closure algorithm is a variant of the path
consistency algorithm. Instead of ordinary composition of
relations, we use weak composition.
Since weak composition is an upper approximation of
composition only, the algebraic closure algorithm may not
result in a path-consistent network.

Let P = 〈V,D,C〉 be a (normalized) qualitative constraint
network.
Let Table [i, j] be a n× n-matrix (n: number of variables), in
which we record the constraints between the variables.
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Algebraic closure algorithm

EnforceAlgClosure (P ):
Input: a qualitative network P = 〈V,D,C〉
Output: “inconsistent”, or an equivalent algebraically closed network P ′

Paths(i, j) = {(i, j, k) : 1 ≤ k ≤ n, k 6= i, j} ∪
{(k, i, j) : 1 ≤ k ≤ n, k 6= i, j}

Queue :=
⋃

i,j Paths(i, j)

while Q 6= ∅
select and delete (i, k, j) from Q
T := Table [i, j] ∩ (Table [i, k] ◦w Table [k, j])

if T = ∅
return “inconsistent”

elseif T 6= Table [i, j]
Table [i, j] := T
Table [j, i] := T−1

Queue := Queue ∪ Paths(i, j)
return P ′ with the refined constraints as recorded in Table
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Computing on the symbolic level

Let Γ be a qualitative constraint language with partition
scheme ∆.
We suppose that we have determined (by some formal proof or
some computation) the (weak) composition table for ∆, i.e.,

◦(w) : ∆×∆→ 2∆.

Let now B be a finite set of symbols (bijective with ∆).
Then 2B is a Boolean algebra, from which we obtain a
(non-associative) relation algebra, if we extend ◦(w) to a
function

◦(w) : 2B × 2B → 2B.

Now we can perform all the operations needed in the path
consistency/a-closure algorithm on the symbolic level.
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Allen’s Interval Calculus

Allen’s interval calculus (IA): time intervals and binary
relations over them

Let 〈R, <〉 be the linear order on the real numbers
(conceived of as the flow of time).
Then, the domain D of Allen’s calculus is the set of all
intervals

X = (X−, X+) ∈ R2, where X− < X+

(näıve approach)

Relations between concrete intervals, e. g.:

(1.0,2.0) strictly before (3.0,5.5)
(1.0,3.0) meets (3.0,5.5)
(1.0,4.0) overlaps (3.0,5.5)
. . .
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IA: The base relations

To determine all possible relation between Allen intervals, we
determine how one can order the four points of two intervals:

Relation Symbol Name

{(X,Y ) : X− < X+ < Y − < Y +} ≺ before

{(X,Y ) : X− < X+ = Y − < Y +} m meets

{(X,Y ) : X− < Y − < X+ < Y +} o overlaps

{(X,Y ) : X− = Y − < X+ < Y +} s starts

{(X,Y ) : Y − < X− < X+ = Y +} f finishes

{(X,Y ) : Y − < X− < X+ < Y +} d during

{(X,Y ) : Y − = X− < X+ = Y +} ≡ equal

and the converse relations (obtained by exchanging X and Y )
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IA: The 13 base relations graphically

X

Y before

Y
meets

Y
overlaps

Y
during

Y
starts

Y finishes

Y
equals

Y before−1

Y meets−1

Y overlaps−1

Y during−1

Y starts−1

Y finishes−1
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IA: Partition scheme and composition

Lemma

The 13 base relations of Allen’s interval calculus define a
partition scheme on the set of all Allen intervals.

In what follows:

IA: the qualitative constraint language generated from all
base relations of Allen’s interval calculus (contains
213 = 8192 relations)

IA-B: the subclass of IA containing base relations only

Lemma

The set of base relations of Allen’s interval calculus is closed
under composition.
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IA: An example
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Compose the constraints: I4 {d, f} I2 and I2 {d} I1: I4 {d} I1.
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IA: Example for incompleteness
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IA: NP-hardness

Theorem (Kautz & Vilain)

Deciding satisfiability over IA is NP-hard.

Proof.

Reduction from 3-colorability (the original proof uses 3Sat).

Let G = (V,E), V = {v1, . . . , vn} be an instance of 3-colorability.
Then we use the intervals {v1, . . . , vn, 1, 2, 3} with the following
constraints:

1 {m} 2
2 {m} 3
vi {m,≡, m−1} 2 ∀vi ∈ V
vi {m, m−1,≺,�} vj ∀(vi, vj) ∈ E

This constraint system is satisfiable iff G can be colored with 3
colors.



Constraint
Satisfaction

Problems

Nebel, Hué
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IA: Clause representation

Following, we will look at polynomial special cases, i.e.,
subclasses of the qualitative constraint language IA.

For this we start from a natural translation of interval
relations/constraints (of the form X RY ) into clause formulas
over atoms of the form a op b, where:

a, b ∈ {X−, X+, Y −, Y +}; and

op ∈ {<,>,=,≤,≥}.
Example: All base relations can be expressed as unit clauses.

Lemma

Let P be a constraint network over IA, and let π(P ) be the
translation of P into clause form.
P is satisfiable iff π(P ) is satisfiable over the real numbers.
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IA: The Continuous Endpoint Class

Continuous Endpoint Class IA-C: the subset of IA consisting of
those relations with a clause form containing only unit clauses,
where ¬(a = b) is forbidden.

Example: All basic relations and, e.g., {d, o, s}, because

π(X {d, o, s} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −,
X+ < Y +}

� -

� -� ....� ...

Y

X

The set IA-C contains 83 relations. It is closed under
intersection, composition, and converses (it is a sub-algebra
wrt. these three operations on relations). This can be shown by
using a computer program.



Constraint
Satisfaction

Problems

Nebel, Hué
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IA: Consistency for IA-C

One can prove:

Lemma

Each 3-consistent interval CSP over IA-C is globally consistent.

From this we can conclude:

Theorem (van Beek)

Applied to networks over IA-C, enforcing path consistency decides
satisfiability and solves the minimal label problem.

Corollary

A path-consistent interval constraint network containing base
relations only is satisfiable.
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IA: The Endpoint Subclass

Endpoint Subclass: IA-P is the subclass that permits a clause
form containing only unit clauses (a 6= b is now allowed).

Example: all basic relations and {d, o} since

π(X {d, o} Y ) = {X− < X+, Y − < Y +,
X− < Y +, X+ > Y −, X− 6= Y −,
X+ < Y +}

� -

� -X ....� ...

Y

X

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

The path consistency method decides satisfiability over IA-P.
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IA: The ORD-Horn Subclass

ORD-Horn Subclass: IA-H is the subclass of IA that permits a
clause form containing only Horn clauses, where only the
following literals are allowed:

a ≤ b, a = b, a 6= b

¬a ≤ b is not allowed!

Example: all R ∈ IA-P and {o, s, f−1}:

π(X{o, s, f−1}Y ) =
{
X− ≤ X+,X− 6= X+,
Y − ≤ Y +, Y − 6= Y +,
X− ≤ Y −,
X− ≤ Y +,X− 6= Y +,
Y − ≤ X+,X+ 6= Y −,
X+ ≤ Y +,

X− 6= Y − ∨X+ 6= Y +
}
.
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Partial orders: The ORD Theory

Let ORD be the following theory:

∀x, y, z : x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
∀x : x ≤ x (reflexivity)
∀x, y : x ≤ y ∧ y ≤ x → x = y (anti-symmetry)
∀x, y : x = y → x ≤ y (weakening of =)
∀x, y : x = y → y ≤ x (weakening of =).

ORD describes partially ordered sets, ≤ being the
ordering relation.

ORD is a Horn theory

What is missing wrt. dense and linear orders?
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Satisfiability over partial orders

Lemma

Let Θ be a CSP over IA-H . Θ is satisfiable over interval
interpretations iff π(Θ) ∪ORD is satisfiable over arbitrary
interpretations.

Proof.

⇒: Since the reals form a partially ordered set (i. e., satisfy
ORD), this direction is trivial.
⇐: Each extension of a partial order to a linear order satisfies
all formulae of the form a ≤ b, a = b, and a 6= b which have
been satisfied over the original partial order.
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Complexity of CSAT(IA-H )

Let ORDπ(Θ) be the propositional theory resulting from
instantiating all axioms with the endpoints occurring in π(Θ).

Lemma

ORD ∪ π(Θ) is satisfiable iff ORDπ(Θ) ∪ π(Θ) is so.

Theorem

CSAT(IA-H ) can be decided in polynomial time.

Proof.

CSAT(IA-H ) instances can be translated into a propositional
Horn theory with blowup O(n3) according to the previous
Prop., and such a theory is decidable in polynomial time.

IA-C ⊂ IA-P ⊂ IA-H with |IA-C| = 83, |IA-P| =
188, |IA-H | = 868
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and Wölfl

Motivation

Qualitative
Constraint
Languages

Allen’s
Interval
Algebra

Intervals and
Relations
Between Them

IA: Examples

IA: Example for
Incompleteness

The Continuous
Endpoint Class

The Continuous
Endpoint Class

The Endpoint
Subclass

The ORD-Horn
Subclass

Solving Arbitrary
Allen CSPs

Outlook

Literature

Complexity of CSAT(IA-H )

Let ORDπ(Θ) be the propositional theory resulting from
instantiating all axioms with the endpoints occurring in π(Θ).
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Path consistency and the OH-class

Lemma

Let Θ be a path-consistent set over IA-H . Then

(X{}Y ) /∈ Θ iff Θ is satisfiable

Proof idea: One can show that ORDπ(Θ) ∪ π(Θ) is closed wrt.
positive unit resolution. Since this inference rule is refutation
complete for Horn theories, the claim follows.

Theorem

Enforcing path consistency decides CSAT(IA-H ).

 Maximality of IA-H ?

 Do we have to check all 8192− 868 extensions?
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IA: The ORD-Horn subclass: Maximality

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras containing all base relations
that strictly contain IA-H: X1,X2

N1 = {d, d−1, o−1, s−1, f} ∈ X1

N2 = {d−1, o, o−1, s−1, f−1} ∈ X2

The clause forms of these relations contain “proper” disjunctions!

Theorem

The satisfiability problem over IA-H ∪ {Ni} is NP-complete.

Lemma

IA-H is the only maximal tractable subclass that contains all base
relations of IA.
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IA: Solving general Allen CSPs

Backtracking algorithm using path consistency as a
forward-checking method

Method works on tractable fragments of Allen’s calculus:
split relations into relations of a tractable fragment, and
backtrack over these.

Refinements and evaluation of different heuristics

 Which tractable fragment should one use?
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IA: Branching factors

If the labels are split into base relations, then on average a
label is split into

6.5 relations

If the labels are split into pointizable relations (P), then
on average a label is split into

2.955 relations

If the labels are split into ORD-Horn relations (H), then
on average a label is split into

2.533 relations

 A difference of 0.422 which becomes significant, when
applied to extremely hard instances
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Summary

Allen’s interval calculus is often adequate for describing
relative orders of events that have duration.

The satisfiability problem for CSPs using the relations is
NP-complete.

For the continuous endpoint class, minimal CSPs can be
computed using the path consistency method.

For the larger ORD-Horn class, CSAT is still decided by
the path consistency method.

Can be used in practice for backtracking algorithms.
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Outlook

Qualitative representation and reasoning usually starts
with a finite vocabulary (a finite set of relations).

Qualitative descriptions are usually simply logical theories
consisting of sets of atomic formulae (and some
background theory).

Reasoning problems are (as usual) satisfiability, model
finding, and deduction.

Can be addressed with CSP methods (but note: infinite
domains).

Path consistency is the basic reasoning step . . . sometimes
this is enough.

Usually, path-consistent atomic CSPs are satisfiable.
However, there exist some pathological relation systems.
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