Constraint Satisfaction Problems

Qualitative Representation and Reasoning

Bernhard Nebel, Julien Hué, and Stefan Wölfı

Albert-Ludwigs-Universität Freiburg
July 25, 2012

1 Motivation

■ Qualitative Constraint Satisfaction Problems

Constraint Satisfaction Problems

July 25, 2012 - Qualitative Representation and Reasoning

1 Motivation

2 Qualitative Constraint Languages
3 Allen's Interval Algebra
4 Literature

Quantitative vs. qualitative representations

Spatio-temporal configurations can be described quantitatively by specifying the coordinates of the relevant objects:

Example: At time point 10.0 object A is at position
(11.0, 1.0, 23.7), at time point 11.0 at position (15.2, 3.5, 23.7). From time point 0.0 to 11.0 , object B is at position (15.2, 3.5, 23.7). Object C is at time point 11.0 at position (300.9, 25.6, 200.0) and at time point 35.0 at (11.0, 1.0, 23.7).

Often, however, a qualitative description (using a finite vocabulary) is more adequate:

Example: Object A hit object
B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions.

Example: Object C was not close to object A, when it hit object B.

Representation of qualitative knowledge

Intention: describe configurations in an infinite (continuous) domain using a finite vocabulary and reason about these descriptions

- Specification of a vocabulary: usually a finite set of relations (often binary) that are pairwise disjoint and jointly exhaustive
- Specification of a language: often sets of atomic formulae (constraint networks), perhaps restricted disjunction
- Specification of a formal semantics
- Analysis of computational properties and design of reasoning methods (often constraint propagation)
- Perhaps, specification of operational semantics for verifying whether a relation holds in a given quantitative configuration

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems
July 25, 2012

Example: Qualitative temporal relations

Suppose, we want to talk about time instants (points) and binary relations over them.

- Vocabulary: $X=Y(X$ equals $Y), X<Y(X$ before $Y)$, and $X>Y$ (X after Y).
- Language:
- Allow for disjunctions of basic relations to express indefinite information. Use unions of relations to express that. For instance, $<\cup=$ expresses \leq.
- 2^{3} different relations (including the impossible and the universal relation)
- Use sets of atomic formulae with these relations to describe configurations. For example:

$$
\{x=y, y(<\cup>) z\}
$$

- Semantics: Interpret the time point symbols and relation symbols over the real (or rational) numbers.

Applications in ...

- Natural language processing
- Specification of abstract spatio-temporal configurations
- Query languages for spatio-temporal information systems
- Layout descriptions of documents (and learning of such layouts)
- Action planning
- ...

Motivation

Some reasoning problems

$$
\{x(<\cup=) y, y(<\cup=) z, v(<\cup=) y, w>y, z(<\cup=) x\}
$$

- Satisfiability: Are there values for all time points such that all formulae are satisfied?
- Satisfiability with $v=w$?
- Finding a satisfying instantiation of all time points
- Deduction: Does $x\{=\} y$ follow logically?

$$
\text { Does } v \leq w \text { follow? }
$$

- Finding a minimal description: What are the most constrained relations that describe the same set of instantiations?

From a logical point of view ...

In general, qualitatively described configurations are simple logical theories:

- Only sets of atomic formulae to describe the configuration
- Only existentially quantified variables (or constants)
- A fixed background theory that describes the semantics of the relations (e.g., dense linear orders)
- We are interested in satisfiability, model finding, and deduction
Motivation Qualitative CSP

Computing operations on relations

Let \mathcal{A} be the system of relations over a set of base relations \mathcal{B} that satisfies all the conditions above.
We may write relations as sets of base relations

$$
B_{1} \cup \cdots \cup B_{n} \cong\left\{B_{1}, \ldots, B_{n}\right\}
$$

Then the operations on the relations can be computed as follows:
Composition:

$$
\left\{B_{1}, \ldots B_{n}\right\} \circ\left\{B_{1}^{\prime}, \ldots, B_{m}^{\prime}\right\}=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m} B_{i} \circ B_{j}^{\prime}
$$

Converse:

$$
\left\{B_{1}, \ldots, B_{n}\right\}^{-1}=\left\{B_{1}^{-1}, \ldots, B_{n}^{-1}\right\}
$$

Complement:

$$
\overline{\left\{B_{1}, \ldots, B_{n}\right\}}=\left\{B \in \mathcal{B}: B \neq B_{i}, \text { for each } 1 \leq i \leq n\right\}
$$

Intersection and union are defined in the usual set-theoretical way.

Motivation Qualitative CSP

Let \mathcal{B} be a finite set of (binary) relations on some (infinite) domain D (elements of \mathcal{B} are called base relations).
We require:

- The relations in \mathcal{B} are JEPD, i.e., jointly exhaustive and pairwise disjoint.
- \mathcal{B} is closed under converses.

Then:

- Let \mathcal{A} be the set of relations that can be built by taking the unions of relations from $\mathcal{B}\left(\rightsquigarrow 2^{|\mathcal{B}|}\right.$ different relations).
- \mathcal{A} is closed under converse, complement, intersection and union.
- Often, \mathcal{A} is closed under composition of base relations, i.e., for all $B, B^{\prime} \in \mathcal{B}$,

$$
B \circ B^{\prime} \in \mathcal{A} .
$$

Then, \mathcal{A} is closed under composition of arbitrary relations.
But often this condition is not satisfied
Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

Reasoning problems

Given a qualitative CSP:

CSP-Satisfiability (CSAT):

- Is the CSP satisfiable/solvable?

CSP-Entailment (CENT):

- Given in addition x Ry: Is x Ry satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

- Compute for each pair x, y of variables the strongest constrained (minimal) relation entailed by the CSP.

Motivation Qualitative CSP

Reductions between CSP problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial Turing reductions.

Proof.
CSAT \leq_{T} CENT and CENT \leq_{T} CMIN are obvious.
CENT \leq_{T} CSAT: We solve CENT (CSP $\models x R y$?) by testing satisfiability of the CSP extended by $x\{B\} y$ where B ranges over all base relations. Let B_{1}, \ldots, B_{k} be the relations for which we get a positive answer. Then $x\left\{B_{1}, \ldots, B_{k}\right\} y$ is entailed by the CSP.
CMIN \leq_{T} CENT: We use entailment for computing the minimal constraint for each pair of variables. Starting with the universal relation, we remove one base relation until we have a minimal relation that is still entailed.

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

Example: Point relations

Composition table:

	$<$	$=$	$>$
$<$	$<$	$<$	$<,=,>$
$=$	$<$	$=$	$>$
$>$	$<,=,>$	$>$	$>$

Figure: Composition table for the point algebra. For example: $\{<\} \circ\{=\}=\{<\}$

- $\{<,=\} \circ\{<\}=\{<\}$
- $\{<,>\} \circ\{<\}=\{<,=,>\}$
- $\{<,=\}^{-1}=\{>,=\}$
- $\{<,=\} \cap\{>,=\}=\{=\}$

The Path Consistency Method

Given a qualitative CSP with $R_{v_{1}, v_{2}}=R_{v_{2}, v_{1}}^{-1}$. Then the path consistency method is to apply the operation

$$
R_{v_{1}, v_{2}} \leftarrow R_{v_{1}, v_{2}} \cap\left(R_{v_{1}, v_{3}} \circ R_{v_{3}, v_{2}}\right) .
$$

on all the constraints of the network until a fixpoint is reached.
The path consistency method guarantees...

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

Some properties of the point relations

Theorem
A path consistent CSP over the point relations is satisfiable.
In particular, the path consistency method decides satisfiability.

Theorem
A path consistent CSP over all point relations without $\{<\rangle$,$\} is minimal.$
Proofs later ...

Qualitative Constraint Languages

2 Qualitative Constraint Languages

- Constraint Propagation

Qualitative constraint network

Let Γ be a subset of a qualitative constraint language with partition scheme Δ.

Definition
A qualitative constraint network over Γ is a triple

$$
P=\langle V, D, C\rangle,
$$

where:

- V is a non-empty and finite set of variables,
- D is an arbitrary non-empty set (domain),
- C is a finite set of constraints C_{1}, \ldots, C_{q}, i.e., each constraint C_{i} is a pair $\left(s_{i}, R_{i}\right)$, where s_{i} is a pair of variables and R_{i} is a binary relation contained in Γ.

Qualitative constraint languages

From now on, let D be a finite or infinite domain.
Definition
A partition scheme on D is any non-empty, finite set Δ of binary relations on D such that:

- Δ defines a partition of $D \times D$.
- Δ contains the binary identity relation id ${ }_{D}$.
- Δ is closed under converses.

Definition

A constraint language of binary relations on D, Γ, is said to be generated from a partition scheme Δ, if Γ consists of all finite unions of relations in Δ.
Constraint languages in this sense will be referred to as qualitative constraint languages.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

Qualitative Constraint Languages

Weak composition

Let Γ be a qualitative constraint language with partition scheme Δ. For $R, S \in \Gamma$, define:

$$
R \circ_{w} S:=\bigcup\{T \in \Delta: T \cap(R \circ S) \neq \emptyset\}
$$

- o_{w} is called weak composition of R and S.

Lemma

For all relations $R, S, T \in \Gamma$,

- $R \circ S \subseteq R \circ{ }_{w} S$;
- $T \cap(R \circ S)=\emptyset$ if and only if $T \cap\left(R \circ{ }_{w} S\right)=\emptyset$;
- $\left(R \circ_{w} S\right)^{-1}=S^{-1} \circ_{w} R^{-1}$;
- $R \circ_{w}(S \cup T)=\left(R \circ_{w} S\right) \cup\left(R \circ_{w} T\right)$.

Qualitative Constraint Languages

Weak composition: Examples

Example:

Consider a linear order on a domain with 2 elements $a<b$. The relations $R_{<}, R_{=}, R_{>}$define a partition schema on D. It holds:

$$
R_{<} \circ R_{<}=R_{>} \circ R_{>}=\emptyset, R_{<} \circ R_{>}=\{(a, a)\}, R_{>} \circ R_{<}=\{(b, b)\}
$$

but

$$
R_{<} \circ_{w} R_{<}=R_{>} \circ_{w} R_{>}=\emptyset, \quad R_{<} \circ_{w} R_{>}=R_{=}, \quad R_{>} \circ_{w} R_{<}=R_{=}
$$

Moreover,

$$
\left(R_{<} \circ_{w} R_{>}\right) \circ_{w} R_{>}=R_{=} \circ_{w} R_{>}=R_{>} \neq \emptyset=R_{<} \circ_{w} \emptyset=R_{<} \circ_{w}\left(R_{>} \circ_{w} R_{>}\right) .
$$

Example:
Consider a linear order on a domain with 3 elements $a<b<c$. Then

$$
R_{<} \circ R_{<}=\{(a, c)\} \quad \text { but } \quad R_{<} \circ_{w} R_{<}=R_{<} .
$$

Nebel, Hué and Wölfl (Universität Freiburg)

Algebraically closed networks

A qualitative network $P=\langle V, D, C\rangle$ is normalized, if

- for each pair of variables x, y, C contains at least one constraint $((x, y), R)$;
- for each constraint $((x, x), R)$ in $C, R=\mathrm{id}_{D}$;
- for constraints $((x, y), R)$ and $((y, x), S)$ in $C, R=S^{-1}$.

In what follows we will always assume that constraint networks are normalized.

Definition

A qualitative constraint network P is algebraically closed (or: a-closed), if for all constraints $((x, y), R),((x, z), S)$, and $((z, y), T)$ of P, it holds:

$$
R \subseteq S \circ_{w} T
$$

Qualitative languages and algebras

Let Γ be a qualitative constraint language with partition scheme Δ. As spelled out before, each relation R in Γ can be represented by a finite disjunction of "base relations" $B_{1}, \ldots, B_{k} \in \Delta$. In what follows we identify R with the set of its base relations

$$
\left\{B_{1}, \ldots, B_{k}\right\}
$$

Lemma

For each partition scheme Δ, the tuple

$$
\left\langle 2^{\Delta}, \cap, \cup, \circ_{w}, \mathbf{C}_{\Delta},{ }^{-1}, \emptyset, \Delta, \mathrm{id}_{\Delta}\right\rangle
$$

defines a non-associative relation algebra.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
Qualitative Constraint Languages Constraint Propagation

Constraint propagation

The path consistency algorithm can only be used if the underlying partition scheme is closed under composition, i.e., if for each pair of relations $R, S \in \Delta, R \circ S$ is a (finite) union of a subset of Δ.
The algebraic closure algorithm is a variant of the path consistency algorithm. Instead of ordinary composition of relations, we use weak composition.
Since weak composition is an upper approximation of composition only, the algebraic closure algorithm may not result in a path-consistent network.

Let $P=\langle V, D, C\rangle$ be a (normalized) qualitative constraint network. Let Table $[i, j]$ be a $n \times n$-matrix (n : number of variables), in which we record the constraints between the variables.

Note: If P is algebraically closed, then $R=R \cap\left(S \circ_{w} T\right)$.

Qualitative Constraint Languages Constraint Propagation

Algebraic closure algorithm

EnforceAlgClosure (P):

Input: a qualitative network $P=\langle V, D, C\rangle$
Output: "inconsistent", or an equivalent algebraically closed network P^{\prime}

$$
\begin{aligned}
& \operatorname{Paths}(i, j)=\{(i, j, k): 1 \leq k \leq n, k \neq i, j\} \cup \\
& \{(k, i, j): 1 \leq k \leq n, k \neq i, j\}
\end{aligned}
$$

Queue : $=\bigcup_{i, j} \operatorname{Paths}(i, j)$
while $Q \neq \emptyset$
select and delete (i, k, j) from Q
$T:=$ Table $[i, j] \cap\left(\right.$ Table $[i, k] \circ_{w}$ Table $\left.[k, j]\right)$
if $T=\emptyset$
return "inconsistent"
elseif $T \neq$ Table $[i, j]$
Table $[i, j]:=T$
Table $[j, i]:=T^{-1}$
Queue $:=$ Queue \cup Paths (i, j)
return P^{\prime} with the refined constraints as recorded in Table

3 Allen's Interval Algebra

- Intervals and Relations Between Them
- IA: Examples
- IA: Example for Incompleteness
- The Continuous Endpoint Class
- The Continuous Endpoint Class

■ The Endpoint Subclass

- The ORD-Horn Subclass
- Solving Arbitrary Allen CSPs
- Outlook

Computing on the symbolic level

Let Γ be a qualitative constraint language with partition scheme Δ. We suppose that we have determined (by some formal proof or some computation) the (weak) composition table for Δ, i.e.,

$$
{ }_{(w)}: \Delta \times \Delta \rightarrow 2^{\Delta}
$$

Let now B be a finite set of symbols (bijective with Δ)
Then 2^{B} is a Boolean algebra, from which we obtain a (non-associative) relation algebra, if we extend ${ }_{(}(w)$ to a function

$$
O_{(w)}: 2^{B} \times 2^{B} \rightarrow 2^{B} .
$$

Now we can perform all the operations needed in the path consistency/a-closure algorithm on the symbolic level.

[^0]
Allen's Interval Calculus

- Allen's interval calculus (IA): time intervals and binary relations over them
- Let $\langle\mathbb{R},<\rangle$ be the linear order on the real numbers (conceived of as the flow of time).
Then, the domain D of Allen's calculus is the set of all intervals

$$
X=\left(X^{-}, X^{+}\right) \in \mathbb{R}^{2}, \text { where } X^{-}<X^{+}
$$

(naïve approach)

- Relations between concrete intervals, e.g.:
$(1.0,2.0)$ strictly before $(3.0,5.5)$
$(1.0,3.0)$ meets $(3.0,5.5)$
$(1.0,4.0)$ overlaps $(3.0,5.5)$

IA: The base relations

To determine all possible relation between Allen intervals, we determine how one can order the four points of two intervals:

Relation	Symbol	Name
$\left\{(X, Y): X^{-}<X^{+}<Y^{-}<Y^{+}\right\}$	\prec	before
$\left\{(X, Y): X^{-}<X^{+}=Y^{-}<Y^{+}\right\}$	m	meets
$\left\{(X, Y): X^{-}<Y^{-}<X^{+}<Y^{+}\right\}$	\circ	overlaps
$\left\{(X, Y): X^{-}=Y^{-}<X^{+}<Y^{+}\right\}$	s	starts
$\left\{(X, Y): Y^{-}<X^{-}<X^{+}=Y^{+}\right\}$	f	finishes
$\left\{(X, Y): Y^{-}<X^{-}<X^{+}<Y^{+}\right\}$	d	during
$\left\{(X, Y): Y^{-}=X^{-}<X^{+}=Y^{+}\right\}$	\equiv	equal

and the converse relations (obtained by exchanging X and Y)

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems
July 25, $2012 \quad 29 / 53$

IA: The 13 base relations graphically

IA: An example

Compose the constraints: $14\{\mathrm{~d}, \mathrm{f}\} \mathrm{I} 2$ and $\mathrm{I} 2\{\mathrm{~d}\} \mathrm{I} 1: \mathrm{I} 4\{\mathrm{~d}\} \mathrm{I} 1$.

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

IA: NP-hardness

Theorem (Kautz \& Vilain)
Deciding satisfiability over IA is NP-hard.
Proof.
Reduction from 3-colorability (the original proof uses 3Sat).
Let $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$ be an instance of 3-colorability.
Then we use the intervals $\left\{v_{1}, \ldots, v_{n}, 1,2,3\right\}$ with the following constraints:

1	$\{\mathrm{~m}\}$	2	
2	$\{\mathrm{~m}\}$	3	
v_{i}	$\left\{\mathrm{~m},=\mathrm{m}^{-1}\right\}$	2	$\forall v_{i} \in V$
v_{i}	$\left\{\mathrm{~m}, \mathrm{~m}^{-1}, \prec, \succ\right\}$	v_{j}	$\forall\left(v_{i}, v_{j}\right) \in E$

This constraint system is satisfiable iff G can be colored with 3 colors.

IA: Example for incompleteness

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems
July 25, 2012

IA: Clause representation

Following, we will look at polynomial special cases, i.e., subclasses of the qualitative constraint language IA.

For this we start from a natural translation of interval relations/constraints (of the form $X R Y$) into clause formulas over atoms of the form a op b, where:

- $a, b \in\left\{X^{-}, X^{+}, Y^{-}, Y^{+}\right\}$; and
- $o p \in\{<,>,=, \leq, \geq\}$.

Example: All base relations can be expressed as unit clauses.

Lemma

Let P be a constraint network over $I A$, and let $\pi(P)$ be the translation of P into clause form.
P is satisfiable iff $\pi(P)$ is satisfiable over the real numbers.

Allen's Interval Algebra The Continuous Endpoint Class

IA: The Continuous Endpoint Class

Continuous Endpoint Class IA-C: the subset of IA consisting of those relations with a clause form containing only unit clauses, where $\neg(a=b)$ is forbidden.

Example: All basic relations and, e.g., $\{d, o, s\}$, because

$$
\begin{aligned}
\pi(X\{\mathrm{~d}, \mathrm{o}, \mathrm{~s}\} Y)= & \left\{X^{-}<X^{+}, Y^{-}<Y^{+}\right. \\
& X^{-}<Y^{+}, X^{+}>Y^{-} \\
& \left.X^{+}<Y^{+}\right\}
\end{aligned}
$$

The set IA-C contains 83 relations. It is closed under intersection, composition, and converses (it is a sub-algebra wrt. these three operations on relations). This can be shown by using a computer program.

IA: The Endpoint Subclass

Endpoint Subclass: IA- \mathcal{P} is the subclass that permits a clause form containing only unit clauses ($a \neq b$ is now allowed).
Example: all basic relations and $\{\mathrm{d}, \mathrm{o}\}$ since

$$
\begin{aligned}
\pi(X\{\mathrm{~d}, \mathrm{o}\} Y)= & \left\{X^{-}<X^{+}, Y^{-}<Y^{+}\right. \\
& X^{-}<Y^{+}, X^{+}>Y^{-}, X^{-} \neq Y^{-} \\
& \left.X^{+}<Y^{+}\right\}
\end{aligned}
$$

$$
4 \cdot X \cdot \ldots \underset{\longleftrightarrow}{\longleftrightarrow}
$$

Y

Theorem (Vilain \& Kautz 86, Ladkin \& Maddux 88)
The path consistency method decides satisfiability over IA-P.

IA: Consistency for IA-C

One can prove:

Lemma
Each 3-consistent interval CSP over IA-C is globally consistent.
From this we can conclude:
Theorem (van Beek)
Applied to networks over IA-C, enforcing path consistency decides satisfiability and solves the minimal label problem.

Corollary
A path-consistent interval constraint network containing base relations only is satisfiable.

IA: The ORD-Horn Subclass

ORD-Horn Subclass: IA-H is the subclass of IA that permits a clause form containing only Horn clauses, where only the following literals are allowed:

$$
a \leq b, a=b, a \neq b
$$

$\neg a \leq b$ is not allowed!
Example: all $R \in \mathrm{IA}-\mathcal{P}$ and $\left\{\mathrm{o}, \mathrm{s}, \mathrm{f}^{-1}\right\}$:

$$
\pi\left(X\left\{o, \mathrm{~s}, \mathrm{f}^{-1}\right\} Y\right)=\left\{\begin{array}{l}
X^{-} \leq X^{+}, X^{-} \neq X^{+} \\
Y^{-} \leq Y^{+}, Y^{-} \neq Y^{+} \\
\\
\\
X^{-} \leq Y^{-}, \\
\\
X^{-} \leq Y^{+}, X^{-} \neq Y^{+} \\
\\
\\
Y^{-} \leq X^{+}, X^{+} \neq Y^{-} \\
\\
\\
\\
\\
\\
\end{array} X^{+} \neq Y^{+}, Y^{-} \vee X^{+} \neq Y^{+}\right\} .
$$

Allen's Interval Algebra The ORD-Horn Subclass

Partial orders: The ORD Theory

Let $O R D$ be the following theory:

$$
\begin{array}{lllll}
\forall x, y, z: & x \leq y \wedge y \leq z & \rightarrow x \leq z & \text { (transitivity) } \\
\forall x: & x \leq x & & & \text { (reflexivity) } \\
\forall x, y: & x \leq y \wedge y \leq x \rightarrow x=y & \text { (anti-symmetry) } \\
\forall x, y: & x=y & \rightarrow x \leq y & \text { (weakening of }=\text {) } \\
\forall x, y: & x=y & \rightarrow y \leq x & \text { (weakening of }=\text {). }
\end{array}
$$

- ORD describes partially ordered sets, \leq being the ordering relation
- ORD is a Horn theory
- What is missing wrt. dense and linear orders?

Complexity of CSAT (IA-H)

Let $O R D_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.
Lemma
$O R D \cup \pi(\Theta)$ is satisfiable iff $O R D_{\pi(\Theta)} \cup \pi(\Theta)$ is so.
Theorem
$\operatorname{CSAT}(I A-\mathcal{H})$ can be decided in polynomial time.
Proof.
CSAT (IA-H) instances can be translated into a propositional Horn theory with blowup $O\left(n^{3}\right)$ according to the previous Prop., and such a theory is decidable in polynomial time.
$\mid \mathrm{A}-\mathcal{C} \subset \mathrm{IA}-\mathcal{P} \subset \mathrm{IA}-\mathcal{H} \quad$ with $\quad|\mathrm{IA}-\mathcal{C}|=83,|\mathrm{IA}-\mathcal{P}|=188,|\mathrm{IA}-\mathcal{H}|=868$

Satisfiability over partial orders

Lemma
Let Θ be a CSP over IA-H. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup O R D$ is satisfiable over arbitrary interpretations.

Proof.
\Rightarrow : Since the reals form a partially ordered set (i. e., satisfy $O R D$), this direction is trivial.
\Leftarrow : Each extension of a partial order to a linear order satisfies all formulae of the form $a \leq b, a=b$, and $a \neq b$ which have been satisfied over the original partial order.

Path consistency and the OH -class

Lemma
Let Θ be a path-consistent set over IA-H. Then

$$
(X\} Y) \notin \Theta \text { iff } \Theta \text { is satisfiable }
$$

Proof idea: One can show that $O R D_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt. positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Theorem
Enforcing path consistency decides CSAT(IA-H).
\leadsto Maximality of IA-H ?
\rightsquigarrow Do we have to check all 8192-868 extensions?

Allen's Interval Algebra The ORD-Horn Subclass

IA: The ORD-Horn subclass: Maximality

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras containing all base relations that strictly contain IA- $\mathcal{H}: \mathcal{X}_{1}, \mathcal{X}_{2}$

$$
\begin{aligned}
& N_{1}=\left\{\mathrm{d}, \mathrm{~d}^{-1}, \mathrm{o}^{-1}, \mathrm{~s}^{-1}, \mathrm{f}\right\} \in \mathcal{X}_{1} \\
& N_{2}=\left\{\mathrm{d}^{-1}, \mathrm{o}, \mathrm{o}^{-1}, \mathrm{~s}^{-1}, \mathrm{f}^{-1}\right\} \in \mathcal{X}_{2}
\end{aligned}
$$

The clause forms of these relations contain "proper" disjunctions!
Theorem
The satisfiability problem over IA-H $\cup\left\{N_{i}\right\}$ is NP-complete.
Lemma
IA-H is the only maximal tractable subclass that contains all base relations of IA.

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

IA: Solving general Allen CSPs

- Backtracking algorithm using path consistency as a forward-checking method
- Method works on tractable fragments of Allen's calculus: split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics
\rightsquigarrow Which tractable fragment should one use?

IA: Branching factors

- If the labels are split into base relations, then on average a label is split into

6.5 relations

- If the labels are split into pointizable relations (\mathcal{P}), then on average a label is split into 2.955 relations
- If the labels are split into ORD-Horn relations (\mathcal{H}), then on average a label is split into

2.533 relations

\rightsquigarrow A difference of 0.422 which becomes significant, when applied to extremely hard instances

Allen's Interval Algebra Solving Arbitrary Allen CSPs

Allen's Interval Algebra Solving Arbitrary Allen CSPs

Summary

- Allen's interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path consistency method.
- Can be used in practice for backtracking algorithms.

Outlook

－Qualitative representation and reasoning usually starts with a finite vocabulary（a finite set of relations）．
－Qualitative descriptions are usually simply logical theories consisting of sets of atomic formulae（and some background theory）．
－Reasoning problems are（as usual）satisfiability，model finding，and deduction．
－Can be addressed with CSP methods（but note：infinite domains）．
－Path consistency is the basic reasoning step ．．．sometimes this is enough．
－Usually，path－consistent atomic CSPs are satisfiable．However，there exist some pathological relation systems．

Literature I

囯 J．F．Allen．
Maintaining knowledge about temporal intervals．
Communications of the ACM，26（11）：832－843，November 1983.
Also in Readings in Knowledge Representation
R．P．van Beek and R．Cohen．
Exact and approximate reasoning about temporal relations．
Computational Intelligence，6：132－144， 1990
目 Peter B．Ladkin and Roger Maddux
On binary constraint networks．
Journal of the ACM，41：435－469， 1994.
－Alan K．Mackworth．
Constraint satisfaction．
In S．C．Shapiro，editor，Encyclopedia of Artificial Intelligence，pages 205－211 Wiley，Chichester，England， 1987
Alan K．Mackworth．
Consistency in networks of relations．
Artificial Intelligence，8：99－118， 1977.

4 Literature

Literature

Literature II

Ugo Montanari．
Networks of constraints：fundamental properties and applications to picture processing．
Information Science，7：95－132， 1974.
（ B．Nebel and H．－J．Bürckert．
Reasoning about temporal relations：A maximal tractable subclass of Allen＇s interval algebra，
Journal of the ACM，42（1）：43－66， 1995
目 B．Nebel．
Solving hard qualitative temporal reasoning problems：Evaluating the efficiency of using the ORD－horn class．
CONSTRAINTS，1（3）： 175
R．Hirsch．
Tractable approximations for temporal constraint handling
Artificial Intelligence，116：287－295， 2000.
（Contains the pathological set of relations．）

Literature III

(-i. A. Krokhin, P. Jeavons and P. Jonsson,
A complete classification of complexity in Allen's algebra in the presence of a non-trivial basic relation.
Proc. 17th Int. Joint Conf. on AI (IJCAI-01), 83-88, Seattle, WA, 2001.
嗇 J. Renz \& B. Nebel,
Efficient Methods for Qualitative Spatial Reasoning,
Proceedings of the 13th European Conference on Artificial Intelligence (ECAl'98),
August 1998, 562-566.

[^0]: Allen's Interval Algebra Intervals and Relations Between Them

