Constraint Satisfaction Problems
 Constraint Optimization

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Albert-Ludwigs-Universität Freiburg

$$
\text { July 17, } 2012
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Motivation
constraints

Branch and
Bound
Bucket
Elimination

Hard and Soft Constraint

Real-life problems often contain hard and soft constraints:
Hard constraints: must be satisfied;
Soft constraints: should be satisfied, but may be violated.

Constraint Satisfaction Problems

Nebel, Hué and Wölfı

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Hard and Soft Constraint

Real-life problems often contain hard and soft constraints:
Hard constraints: must be satisfied;
Soft constraints: should be satisfied, but may be violated.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

- a request such as "the schedule of teacher should be concentrated in two days" is simply a preference, but not essential for the solution.

What to do with soft constraints?

Hard and Soft Constraint

Real-life problems often contain hard and soft constraints:
Hard constraints: must be satisfied;
Soft constraints: should be satisfied, but may be violated.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

- a request such as "the schedule of teacher should be concentrated in two days" is simply a preference, but not essential for the solution.

What to do with soft constraints?

Constraint Optimization

Formalizing problems with soft and hard constraints leads to

Constraint Satisfaction Problems

Nebel, Hué and Wölfı

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Note: Every constraint satisfaction problem can be viewed as a constraint optimization problem - when not all constraints are satisfiable. Try to find an assignment that maximizes the number of satisfied constraints:

Constraint Optimization

Formalizing problems with soft and hard constraints leads to (also called criterion function or objective function), based on the satisfaction of soft constraints.

A constraint optimization problem (COP) is the problem of finding a variable assignment to all variables that satisfies all hard constraints and at the same time optimizes the global cost function.

Note: Every constraint satisfaction problem can be viewed as a constraint optimization problem - when not all constraints are satisfiable. Try to find an assignment that maximizes the number of satisfied constraints: MAX-CSP problem

Constraint Optimization

Formalizing problems with soft and hard constraints leads to
Constraint
Satisfaction Problems

Nebel, Hué and WölfI (also called criterion function or objective function), based on the satisfaction of soft constraints.

A constraint optimization problem (COP) is the problem of finding a variable assignment to all variables that satisfies all hard constraints and at the same time optimizes the global cost function.

Note: Every constraint satisfaction problem can be viewed as a constraint optimization problem - when not all constraints are satisfiable. Try to find an assignment that maximizes the number of satisfied constraints: MAX-CSP problem.

Example 1: Power Plant Maintenance

Given

(1) a number of power generators,
(2) preventive maintenance intervals,
(3) time for maintenance,
(1) accurate estimates for plant's power demands,

Constraint Satisfaction Problems

Nebel, Hué and WölfI
determine a maintenance schedule respecting (2) that minimizes operating and maintenance costs.

Example 1: Power Plant Maintenance

Given

(1) a number of power generators,
(2) preventive maintenance intervals,
(3) time for maintenance,
(9) accurate estimates for plant's power demands,

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
determine a maintenance schedule respecting (2) that minimizes operating and maintenance costs.

Example 2: Combinatorial Auctions

In combinatorial auctions, bidders can give bids for sets of
Constraint Satisfaction Problems

Nebel, Hué and Wölfl selection, e.g., one that maximizes revenue.

Definition

The combinatorial auction problem is specified as follows:
 positive real number Find a subset of bids $B^{\prime} \subseteq B$ such that any two bids in B^{\prime} do not share an item maximizing $\sum_{\left(\cap, r_{i}\right) \in B^{\prime}} r$

Example 2: Combinatorial Auctions

In combinatorial auctions, bidders can give bids for sets of
Constraint
Satisfaction Problems

Nebel, Hué and WölfI selection, e.g., one that maximizes revenue.

Definition

Given: A set of items $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ and a set of bids $B=\left\{b_{1}, \ldots, b_{m}\right\}$ such that each bid is $b_{i}=\left(Q_{i}, r_{i}\right)$, where $Q_{i} \subseteq Q$ and r_{i} is a strictly positive real number.
Task: Find a subset of bids $B^{\prime} \subseteq B$ such that any two bids in B^{\prime} do not share an item maximizing $\sum_{\left(Q_{i}, r_{i}\right) \in B^{\prime}} r_{i}$.

Cost Networks

Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

From Constraint to Cost Networks

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

- We will extend constraint networks to cost networks.
- Hard constraint are modelled as ordinary constraints, we know already.
- Soft constraints are modelled by cost functions, which assign particular costs to variable assignments.
- The costs are aggregated by a global cost function

Global Cost Functions

A constraint optimization problem (COP) is a constraint network extended by a global cost function.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Definition

Given a set of variables $V=\left\{v_{1}, \ldots, v_{n}\right\}$, a set of real-valued functions F_{1}, \ldots, F_{l} over scopes $S_{1}, \ldots, S_{l}, S_{j} \subseteq V$, and assignments a over V. The global cost function F is defined by

$$
F(a)=\sum_{j=1}^{l} F_{j}(a),
$$

where $F_{j}(a)$ means F_{j} applied to assignments in a restricted to the scope of F_{j}, i.e., $F_{j}(a)=F_{j}\left(\bar{a}\left[S_{j}\right]\right)$.

Cost Networks

Constraint optimization problems can be viewed as defined over an extended constraint network called cost network.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Definition

A cost network is a 4-tuple $\mathcal{O}=\left\langle V\right.$, dom, $\left.C_{h}, C_{s}\right\rangle$, where $\left\langle V\right.$, dom, $\left.C_{h}\right\rangle$ is a constraint network (elements of C_{h} are called hard constraints), and $C_{s}=\left\{F_{1}, \ldots, F_{l}\right\}$ is a set of real-valued functions defined over scopes S_{1}, \ldots, S_{l} (elements of C_{s} are called soft constraints).

Cost Networks

Constraint optimization problems can be viewed as defined over an extended constraint network called cost network.

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Definition

A solution to a constraint optimization problem given by a cost network $\mathcal{O}=\left\langle V\right.$, dom, $\left.C_{h}, C_{s}\right\rangle$, is an assignment a^{*} that maximizes (minimizes) $F(a)$ among all assignments a that satisfy $\left\langle V\right.$, dom, $\left.C_{h}\right\rangle$.

Soft constraints

Example: Pacman

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
... you have the following needs. In a given number of steps, find the optimal route that:

- catches as many red dots as possible;
- then catches as many green dots as possible;
- then catches as many blue dots as possible.

Pacman Solution: find a proper valuation

In a given number of steps (lets say 100):

- red dots, then green dots, then blue dots.

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Pacman Solution: find a proper valuation

In a given number of steps (lets say 100):

- red dots, then green dots, then blue dots.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
The proper valuation would be:
Blue dots are the less valuable.
Blue dot $=1$ point.
One green dot worth more than all blue dots. The worst case
forces us to consider.
Green dot $=101$ points.
One red dot worth more than all green and all blue dots. Red dot $=10201$ points.

Pacman Solution: find a proper valuation

In a given number of steps (lets say 100):

- red dots, then green dots, then blue dots.

The proper valuation would be:
Blue dots are the less valuable.
Blue dot $=1$ point.
One green dot worth more than all blue dots. The worst case forces us to consider.

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

Green dot $=101$ points.
One red dot worth more than all green and all blue dots. Red dot $=10201$ points.

Pacman Solution: find a proper valuation

In a given number of steps (lets say 100):

- red dots, then green dots, then blue dots.

The proper valuation would be:
Blue dots are the less valuable.
Blue dot $=1$ point.
One green dot worth more than all blue dots. The worst case

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination forces us to consider.
Green dot $=101$ points.
One red dot worth more than all green and all blue dots. Red dot $=10201$ points.

Example: Pacman

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Big drawbacks:

- need preprocessing to compute valuation that represents correctly the problem;
- quickly comes up with very big integers.

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Example: Pacman

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Big drawbacks:

- need preprocessing to compute valuation that represents correctly the problem;
- quickly comes up with very big integers.

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

The sum as an aggregator to cost function is not adapted here.

Possibilistic logic

- Two measures of consistency: necessity and possibility defined on $[0,1]$;

Constraint Satisfaction Problems

Nebel, Hué and WölfI

- Necessity measures how forced the beliefs are;
- Possibility measures how compatible with the bases the beliefs are.
$\Pi(\varnothing)=0 \quad \Pi(\Omega)=1 \quad \Pi(A \vee B)=\operatorname{Max}(\Pi(A), \Pi(B))$
$\Pi(A)=0$ means A is impossible.
$\Pi(A)=1$ means A is possible (does not mean it is true),

$N(A)=0$ means A is not forced (does not mean it is wrong)
$N(A)=1$ means A is true.

Possibilistic logic

- Two measures of consistency: necessity and possibility

Constraint Satisfaction Problems

Nebel, Hué and WölfI

- Necessity measures how forced the beliefs are;
- Possibility measures how compatible with the bases the beliefs are.
$\Pi(\emptyset)=0 \quad \Pi(\Omega)=1 \quad \Pi(A \vee B)=M a x(\Pi(A), \Pi(B))$
$\Pi(A)=0$ means A is impossible.
$\Pi(A)=1$ means A is possible (does not mean it is true) $N(A)=1-\Pi(\neg A) \quad N(A \wedge B)=\operatorname{Min}(N(A), N(B))$
$N(A)=0$ means A is not forced (does not mean it is wrong).
$N(A)=1$ means A is true.

Possibilistic logic

- Two measures of consistency: necessity and possibility

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

- Necessity measures how forced the beliefs are;
- Possibility measures how compatible with the bases the beliefs are.

Possibilistic logic

- Two measures of consistency: necessity and possibility defined on $[0,1]$;

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

- Necessity measures how forced the beliefs are;
- Possibility measures how compatible with the bases the beliefs are.

$$
\Pi(\emptyset)=0 \quad \Pi(\Omega)=1 \quad \Pi(A \vee B)=\operatorname{Max}(\Pi(A), \Pi(B))
$$

$\Pi(A)=0$ means A is impossible.
$\Pi(A)=1$ means A is possible (does not mean it is true).
$N(A)=0$ means A is not forced (does not mean it is wrong).
$N(A)=1$ means A is true.

Possibilistic logic

- Two measures of consistency: necessity and possibility defined on $[0,1]$;

Constraint
Satisfaction
Problems
Nebel, Hué and WölfI

- Necessity measures how forced the beliefs are;
- Possibility measures how compatible with the bases the beliefs are.

$$
\Pi(\emptyset)=0 \quad \Pi(\Omega)=1 \quad \Pi(A \vee B)=\operatorname{Max}(\Pi(A), \Pi(B))
$$

$\Pi(A)=0$ means A is impossible.
$\Pi(A)=1$ means A is possible (does not mean it is true).

$$
N(A)=1-\Pi(\neg A) \quad N(A \wedge B)=\operatorname{Min}(N(A), N(B))
$$

$N(A)=0$ means A is not forced (does not mean it is wrong). $N(A)=1$ means A is true.

Possibilistic cost function

A constraint optimization problem (COP) is a constraint network extended by a possibilistic cost function.

Definition

Given a set of variables $V=\left\{v_{1}, \ldots, v_{n}\right\}$, a set of real-valued functions F_{1}, \ldots, F_{l} over $[0,1]$, and assignments a over V. The possibilistic cost function F is defined by

$$
F(a)=\max _{j=1}^{l} F_{j}(a)
$$

The aim here is to find a solution whose most important violated constraints has the lowest necessity degree.

A more general framework: Valued constraints

Definition

A valuation structure is a tuple $\langle E, \oplus, \preccurlyeq v, \perp, \top\rangle$ such that:

- E is a set, whose elements are called valuations, totally ordered by $\preccurlyeq v$ with a maximum (\top) and a minimum (\perp).
- \oplus satisfies:
- commutativity: $a \oplus b=b \oplus a$,
- associativity: $a \oplus(b \oplus c)=(a \oplus b) \oplus c$,
- monotonocity: $(a \preccurlyeq v b) \rightarrow((a \oplus c) \preccurlyeq v(b \oplus c))$,
- neutral element: $a \oplus \perp=a$
- annihilator: $a \oplus T=\top$

Bucket
Elimination

Relations between frameworks

Semiring	E	\times_{s}	$+_{s}$	\succcurlyeq_{s}	0	1
Classical	$\{t, f\}$	\wedge	\vee	$t \succcurlyeq_{s} f$	f	t
Fuzzy	$[0,1]$	\min	\max	\geq	0	1
k-weighted	$\{0, \ldots, k\}$	$+^{k}$	\min	\leq	k	0
Probabilistic	$[0,1]$	$x y$	\max	\geq	1	0
Valued	E	\oplus	$\min _{v}$	$\preccurlyeq v$	\top	\perp

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Still a lot of adaptable real-life concept

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation

- Partially pre-ordered preferences;
- Conditional preferences;
- Stratified Constraint Networks
- ...

Example: Cost Network for Combinatorial Auction

For a combinatorial auction given by item set $Q=\left\{q_{1}, \ldots, q_{n}\right\}$
Constraint
Satisfaction Problems

Nebel, Hué and WölfI network as follows:

- Variables b_{i} with domain $\{0,1\} ; 1$ for selecting the bid, 0 otherwise;
- For each pair b_{i}, b_{j} such that $Q_{i} \cap Q_{j} \neq \emptyset$ a constraint $R_{i j}$ prohibiting that b_{i} and b_{j} are assigned 1 simultaneously;
- Cost functions F_{i} with $F_{i}(a)=r_{i}$ if $a\left(b_{i}\right)=1, F_{i}(a)=0$ otherwise, for an assignment a.
Find a consistent assignment a to the $b_{i} s$ that maximizes $F(a)=\sum_{i} F_{i}(a)$.

Note: cost network $=$ constraint network, because all cost components are unary.

Example Auction

Consider the following auction:

Constraint Satisfaction Problems

Nebel, Hué
and WölfI

$$
\begin{array}{ll}
b_{1}=\{1,2,3,4\}, & r_{1}=8, \\
b_{2}=\{2,3,6\}, & r_{2}=6, \\
b_{3}=\{1,4,5\}, & r_{3}=5, \\
b_{4}=\{2,8\}, & r_{4}=2, \\
b_{5}=\{5,6\}, & r_{5}=2 .
\end{array}
$$

What is the optimal assignment?

Example Auction

Consider the following auction:

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

$$
\begin{array}{ll}
b_{1}=\{1,2,3,4\}, & r_{1}=8, \\
b_{2}=\{2,3,6\}, & r_{2}=6, \\
b_{3}=\{1,4,5\}, & r_{3}=5, \\
b_{4}=\{2,8\}, & r_{4}=2, \\
b_{5}=\{5,6\}, & r_{5}=2 .
\end{array}
$$

What is the optimal assignment?

Reduction of COP-Solving to CSP-Solving

We can always reduce COP-solving to solving a sequence of CSPs.

Constraint
Satisfaction Problems

Nebel, Hué and Wölfı

Motivation
Cost Networks
Soft
constraints

Branch and
Bound
Bucket
Elimination

Reduction of COP-Solving to CSP-Solving

We can always reduce COP-solving to solving a sequence of CSPs.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Given a COP \mathcal{O} which we want to maximize. Consider a sequence of $\operatorname{CSPs} \mathcal{C}_{i}$, s.t. each contains the constraint part of
\mathcal{O} and an additional constraint $\sum_{j} F_{j}(a) \geq c_{i}$, where $c_{1} \leq \ldots \leq c_{i} \leq \ldots$

Solve the CSPs with increasing cost bounds c_{i} until no solution can be found. Then the previous step is the optimal solution provided the difference between the steps is not larger than the smallest difference between different values of the global cost function.

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering
Constraint Satisfaction Problems

Nebel, Hué and WölfI
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$.
For cost bounds from $c_{1}=0$ to $c_{9}=8, a\left(b_{1}\right)=1$ and all others 0 is satisfying.

For cost bound $c_{10}=9$ and $c_{11}=10, a\left(b_{1}\right)=1$ and $a\left(b_{5}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{12}=11, a\left(b_{2}\right)=1$ and $a\left(b_{3}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{13}=12$, there is no satisfying assignment.

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering
Constraint Satisfaction Problems

Nebel, Hué and Wölfl
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$.
For cost bounds from $c_{1}=0$ to $c_{9}=8, a\left(b_{1}\right)=1$ and all others 0 is satisfying.

For cost bound $c_{10}=9$ and $c_{11}=10, a\left(b_{1}\right)=1$ and $a\left(b_{5}\right)=1$ (and all others 0) is satisfying

For cost bound $c_{12}=11, a\left(b_{2}\right)=1$ and $a\left(b_{3}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{13}=12$, there is no satisfying assignment.

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$.
For cost bounds from $c_{1}=0$ to $c_{9}=8, a\left(b_{1}\right)=1$ and all others 0 is satisfying.

For cost bound $c_{10}=9$ and $c_{11}=10, a\left(b_{1}\right)=1$ and $a\left(b_{5}\right)=1$ (and all others 0) is satisfying.

Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination
For cost bound $c_{12}=11, a\left(b_{2}\right)=1$ and $a\left(b_{3}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{13}=12$, there is no satisfying assignment.

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$.
For cost bounds from $c_{1}=0$ to $c_{9}=8, a\left(b_{1}\right)=1$ and all others 0 is satisfying.

For cost bound $c_{10}=9$ and $c_{11}=10, a\left(b_{1}\right)=1$ and $a\left(b_{5}\right)=1$
Nebel, Hué and WölfI

Motivation
Cost Networks
Soft
constraints (and all others 0) is satisfying.

For cost bound $c_{12}=11, a\left(b_{2}\right)=1$ and $a\left(b_{3}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{13}=12$, there is no satisfying assignment.

Branch and Bound

Bucket
Elimination

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering
Constraint
Satisfaction
Problems
$b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$.
For cost bounds from $c_{1}=0$ to $c_{9}=8, a\left(b_{1}\right)=1$ and all others 0 is satisfying.

For cost bound $c_{10}=9$ and $c_{11}=10, a\left(b_{1}\right)=1$ and $a\left(b_{5}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{12}=11, a\left(b_{2}\right)=1$ and $a\left(b_{3}\right)=1$ (and all others 0) is satisfying.

For cost bound $c_{13}=12$, there is no satisfying assignment.

Branch and Bound

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function

Bucket

Elimination

Branch and Bound: First idea

> When solving a COP using a sequence of CSPs, one could use all CSP techniques. However, instead of solving multiple CSPs, one may instead want to integrate the optimization process into the search process.

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfı

First idea:
(a) Set bound $c=0$.
2) Use any systematic search technique to find an assignment that satisfies the constraint part.
(3) Remember solution in a and global cost in c if global cost
(9) Return a and c if no further solutions can be found, otherwise continue with next solution at (3)

Branch and Bound: First idea

When solving a COP using a sequence of CSPs, one could use
Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI one may instead want to integrate the optimization process into the search process.

First idea:
(1) Set bound $c=0$.
(2) Use any systematic search technique to find an assignment that satisfies the constraint part.
(3) Remember solution in a and global cost in c if global cost $>c$.
(9) Return a and c if no further solutions can be found, otherwise continue with next solution at (3).

Pruning

Of course, often it is possible to prune the search, even if no inconsistency has been detected yet.

Constraint Satisfaction Problems

Nebel, Hué
and Wölfl

Main idea behind depth-first branch-and-bound (BnB) If the best solution so far is c, this is a lower bound for allother possible solutions. So, if a partial solution has led to costs of x for all cost components of fully instantiated variables and the best we can achieve for all other cost components is y with $x+y<c$, then we do not need to continue in this branch.

How can we find out what is the best we can achieve?

Pruning

> Of course, often it is possible to prune the search, even if no inconsistency has been detected yet.

Main idea behind depth-first branch-and-bound (BnB): If the best solution so far is c, this is a lower bound for all other possible solutions. So, if a partial solution has led to costs of x for all cost components of fully instantiated variables and the best we can achieve for all other cost components is y with $x+y<c$, then we do not need to continue in this branch.

Pruning

Of course, often it is possible to prune the search, even if no inconsistency has been detected yet.

Main idea behind depth-first branch-and-bound (BnB): If the best solution so far is c, this is a lower bound for all other possible solutions. So, if a partial solution has led to costs of x for all cost components of fully instantiated variables and the best we can achieve for all other cost components is y with $x+y<c$, then we do not need to continue in this branch.

How can we find out what is the best we can achieve?

Bounding Evaluation Function

In the following, we will write $\overrightarrow{a_{i}}$ for partial instantiations of the
Constraint
Satisfaction Problems

Nebel, Hué and WölfI

Definition

A bounding evaluation function for a maximizing (minimizing) constraint optimization problem is a function f over partial assignments such that $f\left(\overrightarrow{a_{i}}\right) \geq \max _{a} F(a)\left(f\left(\overrightarrow{a_{i}}\right) \leq \min _{a} F(a)\right)$ for all satisfying assignments a that extend $\overrightarrow{a_{i}}$.

Note:

- If $f\left(\overrightarrow{a_{i}}\right)<c$ for some already found solution c, then $\overrightarrow{a_{i}}$ cannot be extended to a maximal solution.
- f can also be used as a heuristic for choosing a value of the next variable!

Branch and Bound (BnB) Algorithm

$\underline{\operatorname{BnB}(\mathcal{O}, f):}$
Input: \quad cost network \mathcal{O} and evaluation bounding function f Output: an optimal assignment a^{\prime} (possibly empty) and costs c^{\prime}

Constraint
Satisfaction
Problems
Nebel, Hué and WölfI $\forall i D_{i}^{\prime} \leftarrow D_{i}, i \leftarrow 1, c^{\prime} \leftarrow 0, a^{\prime} \leftarrow \emptyset, a \leftarrow \emptyset$ while ($i \neq 0$)
while $(1 \leq i \leq n)$
remove ($v_{i} \mapsto_{-}$) from $a / /$ remove old assignment to v_{i}
$x \leftarrow \operatorname{SelectValue}\left(i, c^{\prime}\right)$
if $(x=$ null $) D_{i}^{\prime} \leftarrow D_{i} / /$ no value for x_{i} : reset domain $i \leftarrow i-1 / /$ backtrack
else $a \leftarrow a \cup\left\{v_{i} \mapsto x\right\}$

$$
i \leftarrow i+1 / / \text { step forward }
$$

if $(i=n+1) / /$ one solution found
if $\left(F(a)>c^{\prime}\right) / /$ better solution
$a^{\prime} \leftarrow a / /$ remember best solution found so far $\left.c^{\prime} \leftarrow F(a)\right)$
$i \leftarrow n / /$ search for next solution
return $\left(a^{\prime}, c^{\prime}\right)$

Branch and Bound Algorithm: SelectValue

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
$\underline{\operatorname{SelectVAluE}\left(i, c^{\prime}\right):}$
while ($D_{i}^{\prime} \neq \emptyset$)
select $a_{i}^{*} \in D_{i}^{\prime}$ such that

$$
a_{i}^{*}=\text { pick one } \arg \max _{a_{i} \in D_{i}^{\prime}} f\left(a \cup\left\{v_{i} \mapsto a_{i}\right\}\right)
$$

remove a_{i}^{*} from D_{i}^{\prime}
if $\left(a \cup\left\{v_{i} \mapsto a_{i}^{*}\right\}\right)$ is consistent and $\left.f\left(a \cup\left\{v_{i} \mapsto a_{i}^{*}\right\}\right)>c^{\prime}\right)$ return $\left(a_{i}^{*}\right)$
return(null)

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function
Bucket
Elimination

Bounding function - Introduction

Random "Minizing" problem

$$
F_{1}\left(v_{1} \mapsto a_{1}\right)+=10
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function

Bucket

Elimination

Bounding function - Introduction

Random "Minizing" problem

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function
Bucket
Elimination

Bounding function - Introduction

Random "Minizing" problem

$$
\begin{aligned}
& F_{3}\left(v_{3} \mapsto c_{1}\right)+=2 \\
& S=\left\{\left(v_{1} \mapsto a_{1}, v_{2} \mapsto b_{1}, v_{3} \mapsto c_{1}\right)=14\right\}
\end{aligned}
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function

Bucket

Elimination

Bounding function - Introduction

Random "Minizing" problem

$$
\begin{aligned}
& F_{1}\left(v_{1} \mapsto a_{1}\right)+=10 \\
& S=\left\{\left(v_{1} \mapsto a_{1}, v_{2} \mapsto b_{1}, v_{3} \mapsto c_{1}\right)=14\right\}
\end{aligned}
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function

Bucket

Elimination

Bounding function - Introduction

Random "Minizing" problem

Bounding function - Introduction

Random "Minizing" problem

$$
S=\left\{\left(v_{1} \mapsto a_{1}, v_{2} \mapsto b_{1}, v_{3} \mapsto c_{1}\right)=14\right\}
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

Bounding
function

Bucket

Elimination

Bounding function - Introduction

Random "Minizing" problem

$$
S=\left\{\left(v_{1} \mapsto a_{1}, v_{2} \mapsto b_{1}, v_{3} \mapsto c_{1}\right)=14\right\}
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bounding
function

Bucket

Elimination

First-Choice Bounding Function

How to come up with a good bounding evaluation function?
In Operation Research, one often uses Linear Programming to
Constraint
Satisfaction Problems

Nebel, Hué and Wölfl come up with bounds for Integer Programming Problems.

Let us consider what we can achieve for all soft constraints in isolation subject to the partial assignment we have already.
This function is called first-choice $(f c)$ bounding function:

$$
f_{f c}\left(\overrightarrow{a_{i}}\right)=\sum_{F_{j} \in C_{s}} \max _{a_{i+1}, \ldots, a_{n}} F_{j}\left(\overrightarrow{a_{i}} \cup\left\{v_{i+1} \mapsto a_{i+1}, \ldots, v_{n} \mapsto a_{n}\right\}\right)
$$

How could one improve on that?

- Only allow locally consistent partial assignments.
- Do not consider all soft constraints in isolation, but combine them!

Example: Auction again

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Let us consider BnB with the first-choice bounding function on our auction example:
(1) $f_{f c}\left(\left\{b_{1} \mapsto 1\right\}\right)=8+(6+5+2+2)=23$
(2) $f_{f c}\left(\left\{b_{1} \mapsto 1, b_{2} \mapsto 0\right\}\right)=8+(5+2+2)=17$
(3) $f_{f c}\left(\left\{b_{1} \mapsto 1, b_{2} \mapsto 0, b_{3} \mapsto 0\right\}\right)=8+(2+2)=12$
(9) $f_{f c}\left(\left\{b_{1} \mapsto 1, b_{2} \mapsto 0, b_{3} \mapsto 0, b_{4} \mapsto 0\right\}\right)=8+(2)=10$
(6)...

Russian Doll Search: Idea

One way to get more accurate bounding functions is to solve subproblems and store the optimal results, reusing them for larger problems.

Solve a sequence of n problems using BnB , where in the i th hard and soft constraints) are considered.

The results of the previous runs can be used:
(1) as an initial lower bound,
(2) in a heuristic for choosing values, and
(3) to generate a more accurate bounding function.

Improving the Evaluation Function

- Solve n COPs $\mathcal{O}_{i},(i=1, \ldots, n)$ over the last i variables v_{n-i+1}, \ldots, v_{n} using BnB and store maximal costs as c_{i}^{*}.

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

- In the $(n-i+1)$ th run, variables v_{i}, \ldots, v_{n} are considered.

Motivation

- Assume that the variables v_{i}, \ldots, v_{i+j} are instantiated, denoted by the partial assignment $\overrightarrow{a_{j}^{i}}$, and that $C_{i, j}$ are all those soft constraints F such that their scopes have a non-empty intersection with $\left\{v_{i}, \ldots, v_{i+j}\right\}$.
- Then we use the optimal costs from the $n-i-j$ th run to improve on the first-choice function:

$$
\begin{aligned}
f\left(\overrightarrow{a_{j}^{i}}\right)= & c_{n-i-j}^{*}+ \\
& \sum_{F \in C_{i, j}} \max _{a_{i+j+1}, \ldots, a_{n}} F\left(\left\{v_{i} \mapsto a_{i}, \ldots, v_{n} \mapsto a_{n}\right\}\right) .
\end{aligned}
$$

Bucket Elimination

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

General Idea

- Reformulation of adaptive consistency
- Process constraints to remove variables one by one
- Still exponential in the size of the constraints

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Algorithm

Algorithm 1 ELIM-OPT

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
1: Partition the constraints
2: for $p=n$ to 1 do
3: $\quad U_{p}=\cup_{i} S_{i}-x_{p}$
4: $\quad C^{p}=\pi_{U_{p}}\left(\bowtie_{i=1}^{t} C_{i}\right)$
5: \quad for Every tuple t over U_{p} do
6: $\quad h^{p}=\max _{\left\{a_{p} \mid\left(t, a_{p}\right) \text { satisfies } C_{i}\right\}} \sum_{i=1}^{j} h_{i}\left(t, a_{p}\right)$
7: \quad Place h^{p} in latest bucket mentioning a variable in U_{p}
8: end for
9: end for

Bucket Elimination: Example

A	B	$F_{1}(A, B)$	A	C	$F_{2}(A, C)$
1	1	2	2	2	3
2	4	0	1	3	0
2	-	0	1	-	0
-	4	0	-	3	0
-	-	0	-	-	0

Constraint Satisfaction Problems

Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints

Branch and
Bound
Bucket
Elimination

Bucket Elimination: Example

Constraint Satisfaction Problems

Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints

Branch and
Bound
Bucket
Elimination

Bucket Elimination: Example

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

Bucket Elimination: Example

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

Bucket
 Elimination

Bucket Elimination: Example

Bucket Elimination: Example

C	D	$F_{3}(C, D)$	B	D	$F_{4}(B, D)$
3	3	4	4	4	4
2	4	0	1	3	0
2	-	0	1	-	0
-	4	0	-	3	0
-	-	0	-	-	0

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Motivation
Cost Networks
Soft
constraints
$\pi(B, C)\left(F_{3}(C, D)+F_{4}(B, D)\right)$
$F_{j}=\max _{A B C D}\left[F_{1}(A, B)+F_{2}(A, C)\right.$
$\left.+F_{3}(C, D)+F_{4}(B, D)\right]$
$=\max _{A} \max _{B}\left[F_{1}(A, B)\right.$
$+\max _{C}\left[F_{2}(A, C)\right.$
$=\begin{aligned} & \left.\left.+\max _{D}\left[F_{3}(C, D)+F_{4}(B, D)\right]\right]\right] \\ & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\ & \left.+\max _{C}\left[F_{2}(A, C)+h^{D}(B, C)\right]\right]\end{aligned}$

$h^{D}(B, C)=$| B | C | $F_{3}+F_{4}$ |
| :---: | :---: | :---: |
| 1 | 3 | 4 |
| - | 3 | 4 |
| 4 | 2 | 4 |
| 1 | 2 | 0 |
| - | 2 | 0 |
| 4 | - | 4 |
| 1 | - | 0 |
| - | - | 0 |

Branch and Bound

Bucket
 Elimination

Bucket Elimination: Example

Constraint Satisfaction Problems

Nebel, Hué
and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

$$
\begin{aligned}
F_{j}= & \max _{A B C D}\left[F_{1}(A, B)+F_{2}(A, C)\right. \\
= & \left.+F_{3}(C, D)+F_{4}(B, D)\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& +\max _{C}\left[F_{2}(A, C)\right. \\
= & \left.\left.+\max _{D}\left[{ }_{3}(C, D)+F_{4}(B, D)\right]\right]\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\left(\max _{C}\left[F_{2}(A, C)+h^{D}(B, C)\right]\right]\right. \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)+h^{C}(A, B)\right]
\end{aligned}
$$

Bucket
 Elimination

Bucket Elimination: Example

B	C	h^{D}	A	C	$F_{2}(A, C)$
1	3	4	2	2	3
-	3	4	1	3	0
4	2	4	1	-	0
1	2	0	-	3	0
-	2	0	-	-	0
4	-	4			
1	-	0			
-	-	0			

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and Bound

Bucket
 Elimination

Bucket Elimination: Example

$$
\begin{aligned}
& \bullet \\
& \text { B } \\
& \begin{array}{l}
F_{1} \\
h^{C}
\end{array} \\
& F_{j}=\max _{A B C D}\left[F_{1}(A, B)+F_{2}(A, C)\right. \\
& \left.+F_{3}(C, D)+F_{4}(B, D)\right] \\
& =\max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& +\max _{C}\left[F_{2}(A, C)\right. \\
& \left.\left.+\max _{D}\left[F_{3}(C, D)+F_{4}(B, D)\right]\right]\right] \\
& =\max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& \left.+\max _{C}\left[F_{2}(A, C)+h^{D}(B, C)\right]\right] \\
& =\max _{A} \max _{B}\left[F_{1}(A, B)+h^{C}(A, B)\right]
\end{aligned}
$$

B	C	h^{D}	A	C	$F_{2}(A, C)$
1	3	4	2	2	3
-	3	4	1	3	0
4	2	4	1	-	0
1	2	0	-	3	0
-	2	0	-	-	0
4	-	4			
1	-	0			
-	-	0			

$$
\begin{array}{r}
\pi(A, B)\left(F_{2}(A, C)+h^{D}(B, C)\right) \\
h^{C}(A, B)=\begin{array}{|cc|c|}
\hline A & B & F_{2}+h^{D} \\
\hline 1 & 1 & 4 \\
- & 1 & 4 \\
1 & - & 4 \\
- & - & 4 \\
2 & 4 & 7 \\
2 & 1 & 3 \\
2 & - & 3 \\
1 & 4 & 4 \\
- & 4 & 4 \\
\hline
\end{array}
\end{array}
$$

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

Bucket
 Elimination

Bucket Elimination: Example

B

A	B	h^{C}	A	B	F_{1}
1	1	4	1	1	2
-	1	4	2	4	0
1	-	4	2	-	0
-	-	4	-	4	0
2	4	7	-	-	0
2	1	3			
2	-	3			
1	4	4			
-	4	4			

Constraint Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and
Bound

$$
\begin{aligned}
F_{j}= & \max _{A B C D}\left[F_{1}(A, B)+F_{2}(A, C)\right. \\
& \left.+F_{3}(C, D)+F_{4}(B, D)\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& +\max _{C}\left[F_{2}(A, C)\right. \\
& \left.\left.+\max _{D}\left[F_{3}(C, D)+F_{4}(B, D)\right]\right]\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& \left.+\max _{C}\left[F_{2}(A, C)+h^{D}(B, C)\right]\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)+h^{C}(A, B)\right] \\
= & \max _{A}\left[h^{B}(A)\right]
\end{aligned}
$$

Bucket Elimination: Example

$$
\begin{aligned}
& A \\
& B
\end{aligned}
$$

A	B	h^{C}	A	B	F_{1}
1	1	4	1	1	2
-	1	4	2	4	0
1	-	4	2	-	0
-	-	4	-	4	0
2	4	7	-	-	0
2	1	3			
2	-	3			
1	4	4			
-	4	4			

$$
F_{1}(A, B)+h^{C}(A, B)
$$

A	B	$F_{1}+h^{C}$
1	1	6
2	4	7
2	-	3
-	4	4
-	-	4
1	1	0
-	-	0

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Motivation
Cost Networks

Soft
constraints
Branch and Bound

Bucket
 Elimination

Bucket Elimination: Example

```
O
Fj = max ABCD [F ( }A,B)+\mp@subsup{F}{2}{}(A,C
        +F3(C,D)+ F F (B,D)]
    = max A max}\mp@subsup{B}{B}{[F
        + max}C[\mp@subsup{F}{2}{}(A,C
        + max}D[\mp@code{F3}(C,D)+\mp@subsup{F}{4}{}(B,D)]]
    = max}A\mp@subsup{\operatorname{max}}{B}{[}[\mp@subsup{F}{1}{}(A,B
        + max}C[[F2(A,C)+\mp@subsup{h}{}{D}(B,C)]
    = max }\mp@subsup{A}{\mp@subsup{m}{}{\prime}}{\mp@subsup{\operatorname{max}}{B}{}[\mp@subsup{F}{1}{}(A,B)+\mp@subsup{h}{}{C}(A,B)]
    = max }A[\mp@subsup{h}{}{B}(A)
A
```



```
\[
\begin{aligned}
F_{j}= & \max _{A B C D}\left[F_{1}(A, B)+F_{2}(A, C)\right. \\
& \left.+F_{3}(C, D)+F_{4}(B, D)\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& +\max _{C}\left[F_{2}(A, C)\right. \\
& \left.\left.+\max _{D}\left[F_{3}(C, D)+F_{4}(B, D)\right]\right]\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)\right. \\
& \left.+\max _{C}\left[F_{2}(A, C)+h^{D}(B, C)\right]\right] \\
= & \max _{A} \max _{B}\left[F_{1}(A, B)+h^{C}(A, B)\right] \\
= & \max _{A}\left[h^{B}(A)\right]
\end{aligned}
\]
```

A	B	h^{C}	A	B	F_{1}
1	1	4	1	1	2
-	1	4	2	4	0
1	-	4	2	-	0
-	-	4	-	4	0
2	4	7	-	-	0
2	1	3			
2	-	3			
1	4	4			
-	4	4			

Constraint

Satisfaction
Problems
Nebel, Hué
and Wölfl

Motivation
Cost Networks
Soft
constraints
Branch and Bound

Bucket
Elimination

Conclusion \& Outlook

- Problems with hard and soft constraints lead to constraint

Constraint
Satisfaction Problems

Nebel, Hué and Wölfl

- These are formalized using cost functions and cost networks

Motivation

- They can be solved using a reduction to a sequence of CSP problems
- More efficiently, one can search for optimal solutions during the backtracking search
- Branch and Bound is the method of choice
- Its pruning power depends on the accuracy of the bounding evaluation function
- Russian doll search can boost its performance
- Further enhancements are possible using constraint inference techniques (such as bucket elimination).

Literature

囯 Rina Dechter.
Constraint Processing, Chapter 13, Morgan Kaufmann, 2003

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfı

Motivation
Cost Networks
Soft
constraints
Branch and
Bound
Bucket
Elimination

