
Constraint Satisfaction Problems
Constraint Optimization

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 17, 2012

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 1 / 41

Constraint Satisfaction Problems
July 17, 2012 — Constraint Optimization

1 Motivation

2 Cost Networks

3 Soft constraints

4 Branch and Bound

5 Bucket Elimination

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 2 / 41

Motivation

1 Motivation

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 3 / 41

Motivation

Hard and Soft Constraint

Real-life problems often contain hard and soft constraints:

Hard constraints: must be satisfied;

Soft constraints: should be satisfied, but may be violated.

Example: In time-tabling problems,

I resource constraints such as “a teacher can teach only one class at a
time” must be satisfied;

I a request such as “the schedule of teacher should be concentrated in
two days” is simply a preference, but not essential for the solution.

What to do with soft constraints?

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 4 / 41

Motivation

Constraint Optimization

Formalizing problems with soft and hard constraints leads to constraint
networks augmented with a global cost function (also called criterion
function or objective function), based on the satisfaction of soft
constraints.

A constraint optimization problem (COP) is the problem of finding a
variable assignment to all variables that satisfies all hard constraints and at
the same time optimizes the global cost function.

Note: Every constraint satisfaction problem can be viewed as a constraint
optimization problem – when not all constraints are satisfiable. Try to find
an assignment that maximizes the number of satisfied constraints:
MAX-CSP problem.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 5 / 41

Motivation

Example 1: Power Plant Maintenance

Given

1. a number of power generators,

2. preventive maintenance intervals,

3. time for maintenance,

4. accurate estimates for plant’s power demands,

determine a maintenance schedule respecting (2) that minimizes operating
and maintenance costs.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 6 / 41

Motivation

Example 2: Combinatorial Auctions

In combinatorial auctions, bidders can give bids for sets of items. The
auctioneer than has to generate an optimal selection, e.g., one that
maximizes revenue.

Definition
The combinatorial auction problem is specified as follows:

Given: A set of items Q = {q1, . . . , qn} and a set of bids
B = {b1, . . . , bm} such that each bid is bi = (Qi , ri), where
Qi ⊆ Q and ri is a strictly positive real number.

Task: Find a subset of bids B ′ ⊆ B such that any two bids in B ′ do
not share an item maximizing

∑
(Qi ,ri)∈B′ ri .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 7 / 41

Cost Networks

2 Cost Networks

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 8 / 41

Cost Networks

From Constraint to Cost Networks

I We will extend constraint networks to cost networks.

I Hard constraint are modelled as ordinary constraints, we know already.

I Soft constraints are modelled by cost functions, which assign
particular costs to variable assignments.

I The costs are aggregated by a global cost function

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 9 / 41

Cost Networks

Global Cost Functions

A constraint optimization problem (COP) is a constraint network extended
by a global cost function.

Definition
Given a set of variables V = {v1, . . . , vn}, a set of real-valued functions
F1, . . . ,Fl over scopes S1, . . . ,Sl , Sj ⊆ V , and assignments a over V . The
global cost function F is defined by

F (a) =
l∑

j=1

Fj (a),

where Fj (a) means Fj applied to assignments in a restricted to the scope
of Fj , i.e., Fj (a) = Fj (ā[Sj]).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 10 / 41

Cost Networks

Cost Networks

Constraint optimization problems can be viewed as defined over an
extended constraint network called cost network.

Definition
A cost network is a 4-tuple O = 〈V ,dom,Ch,Cs〉, where 〈V , dom,Ch〉 is a
constraint network (elements of Ch are called hard constraints), and
Cs = {F1, . . . ,Fl} is a set of real-valued functions defined over scopes
S1, . . . ,Sl (elements of Cs are called soft constraints).

Definition
A solution to a constraint optimization problem given by a cost network
O = 〈V , dom,Ch,Cs〉, is an assignment a∗ that maximizes (minimizes)
F (a) among all assignments a that satisfy 〈V ,dom,Ch〉.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 11 / 41

Soft constraints

3 Soft constraints

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 12 / 41

Soft constraints

Example: Pacman

. . . you have the following needs. In a given number of steps, find the
optimal route that:

I catches as many red dots as possible;

I then catches as many green dots as possible;

I then catches as many blue dots as possible.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 13 / 41

Soft constraints

Pacman Solution: find a proper valuation

In a given number of steps (lets say 100):

I red dots, then green dots, then blue dots.

The proper valuation would be:

Blue dots are the less valuable.
Blue dot = 1 point.

One green dot worth more than all blue dots. The worst case forces us to
consider.
Green dot = 101 points.

One red dot worth more than all green and all blue dots.
Red dot = 10201 points.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 14 / 41

Soft constraints

Example: Pacman

Big drawbacks:

I need preprocessing to compute valuation that represents correctly the
problem;

I quickly comes up with very big integers.

The sum as an aggregator to cost function is not adapted here.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 15 / 41

Soft constraints

Possibilistic logic

I Two measures of consistency: necessity and possibility defined on
[0,1];

I Necessity measures how forced the beliefs are;

I Possibility measures how compatible with the bases the beliefs are.
Π(∅) = 0 Π(Ω) = 1 Π(A ∨ B) = Max(Π(A),Π(B))

Π(A) = 0 means A is impossible.
Π(A) = 1 means A is possible (does not mean it is true).

N(A) = 1− Π(¬A) N(A ∧ B) = Min(N(A),N(B))

N(A) = 0 means A is not forced (does not mean it is wrong).
N(A) = 1 means A is true.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 16 / 41

Soft constraints

Possibilistic cost function

A constraint optimization problem (COP) is a constraint network extended
by a possibilistic cost function.

Definition
Given a set of variables V = {v1, . . . , vn}, a set of real-valued functions
F1, . . . ,Fl over [0,1], and assignments a over V . The possibilistic cost
function F is defined by

F (a) =
l

max
j=1

Fj (a),

The aim here is to find a solution whose most important violated
constraints has the lowest necessity degree.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 17 / 41

Soft constraints

A more general framework: Valued constraints

Definition
A valuation structure is a tuple 〈E ,⊕,4v ,⊥,>〉 such that:

I E is a set, whose elements are called valuations, totally ordered by 4v

with a maximum (>) and a minimum (⊥).
I ⊕ satisfies:

I commutativity: a⊕ b = b ⊕ a,
I associativity: a⊕ (b ⊕ c) = (a⊕ b)⊕ c ,
I monotonocity: (a 4v b)→ ((a⊕ c) 4v (b ⊕ c)),
I neutral element: a⊕⊥ = a
I annihilator: a⊕> = >

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 18 / 41

Soft constraints

Relations between frameworks

Semiring E ×s +s <s 0 1

Classical {t, f } ∧ ∨ t <s f f t
Fuzzy [0, 1] min max ≥ 0 1

k-weighted {0, . . . , k} +k min ≤ k 0
Probabilistic [0, 1] xy max ≥ 1 0

Valued E ⊕ minv 4v > ⊥

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 19 / 41

Soft constraints

Still a lot of adaptable real-life concept

I Partially pre-ordered preferences;

I Conditional preferences;

I Stratified Constraint Networks

I . . .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 20 / 41

Soft constraints

Example: Cost Network for Combinatorial Auction

For a combinatorial auction given by item set Q = {q1, . . . , qn} and bids
B = {b1, . . . , bm} with bi = (Qi , ri) define a cost network as follows:

I Variables bi with domain {0, 1}; 1 for selecting the bid, 0 otherwise;

I For each pair bi , bj such that Qi ∩ Qj 6= ∅ a constraint Rij prohibiting
that bi and bj are assigned 1 simultaneously;

I Cost functions Fi with Fi (a) = ri if a(bi) = 1, Fi (a) = 0 otherwise,
for an assignment a.

Find a consistent assignment a to the bi s that maximizes
F (a) =

∑
i Fi (a).

Note: cost network = constraint network, because all cost components are
unary.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 21 / 41

Soft constraints

Example Auction

Consider the following auction:

b1 = {1, 2, 3, 4}, r1 = 8,
b2 = {2, 3, 6}, r2 = 6,
b3 = {1, 4, 5}, r3 = 5,
b4 = {2, 8}, r4 = 2,
b5 = {5, 6}, r5 = 2.

What is the optimal assignment?

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 22 / 41

Soft constraints

Reduction of COP-Solving to CSP-Solving

We can always reduce COP-solving to solving a sequence of CSPs.

Given a COP O which we want to maximize. Consider a sequence of CSPs
Ci , s. t. each contains the constraint part of O and an additional constraint∑

j Fj (a) ≥ ci , where c1 ≤ . . . ≤ ci ≤

Solve the CSPs with increasing cost bounds ci until no solution can be
found. Then the previous step is the optimal solution – provided the
difference between the steps is not larger than the smallest difference
between different values of the global cost function.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 23 / 41

Soft constraints

Example: Solving the Auction Problem

Assumption: Step size 1 and static variable ordering b1, b2, b3, b4, b5.

For cost bounds from c1 = 0 to c9 = 8, a(b1) = 1 and all others 0 is
satisfying.

For cost bound c10 = 9 and c11 = 10, a(b1) = 1 and a(b5) = 1 (and all
others 0) is satisfying.

For cost bound c12 = 11, a(b2) = 1 and a(b3) = 1 (and all others 0) is
satisfying.

For cost bound c13 = 12, there is no satisfying assignment.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 24 / 41

Branch and Bound

4 Branch and Bound

Bounding function

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 25 / 41

Branch and Bound

Branch and Bound: First idea

When solving a COP using a sequence of CSPs, one could use all CSP
techniques. However, instead of solving multiple CSPs, one may instead
want to integrate the optimization process into the search process.

First idea:

1. Set bound c = 0.

2. Use any systematic search technique to find an assignment that
satisfies the constraint part.

3. Remember solution in a and global cost in c if global cost > c .

4. Return a and c if no further solutions can be found, otherwise
continue with next solution at (3).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 26 / 41

Branch and Bound

Pruning

Of course, often it is possible to prune the search, even if no inconsistency
has been detected yet.

Main idea behind depth-first branch-and-bound (BnB):
If the best solution so far is c , this is a lower bound for all other possible
solutions. So, if a partial solution has led to costs of x for all cost
components of fully instantiated variables and the best we can achieve for
all other cost components is y with x + y < c , then we do not need to
continue in this branch.

How can we find out what is the best we can achieve?

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 27 / 41

Branch and Bound

Bounding Evaluation Function

In the following, we will write ~ai for partial instantiations of the first i
variables, assuming a static variable ordering.

Definition
A bounding evaluation function for a maximizing (minimizing) constraint
optimization problem is a function f over partial assignments such that
f (~ai) ≥ maxaF (a) (f (~ai) ≤ minaF (a)) for all satisfying assignments a that
extend ~ai .

Note:

I If f (~ai) < c for some already found solution c , then ~ai cannot be
extended to a maximal solution.

I f can also be used as a heuristic for choosing a value of the next
variable!

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 28 / 41

Branch and Bound

Branch and Bound (BnB) Algorithm

BnB(O, f):

Input: cost network O and evaluation bounding function f
Output: an optimal assignment a′ (possibly empty) and costs c ′

∀iD ′i ← Di , i ← 1, c ′ ← 0, a′ ← ∅, a← ∅
while (i 6= 0)

while (1 ≤ i ≤ n)
remove (vi 7→) from a // remove old assignment to vi

x ← SelectValue(i , c ′)
if (x = null) D ′i ← Di // no value for xi : reset domain

i ← i − 1 // backtrack
else a← a ∪ {vi 7→ x}

i ← i + 1 // step forward
if (i = n + 1) // one solution found

if (F (a) > c ′) // better solution
a′ ← a // remember best solution found so far
c ′ ← F (a))

i ← n // search for next solution
return(a′, c ′)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 29 / 41

Branch and Bound

Branch and Bound Algorithm: SelectValue

SelectValue(i , c ′):

while (D ′i 6= ∅)
select a∗i ∈ D ′i such that

a∗i = pick one argmaxai∈D′
i
f (a ∪ {vi 7→ ai})

remove a∗i from D ′i
if (a ∪ {vi 7→ a∗i }) is consistent and

f (a ∪ {vi 7→ a∗i }) > c ′) return(a∗i)
return(null)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 30 / 41

Branch and Bound Bounding function

Bounding function - Introduction
Random “Minizing” problem

F1(v1 7→ a1)+ = 10

F2(v2 7→ b1)+ = 2

F3(v3 7→ c1)+ = 2F3(v3 7→ c2)+ = 4

F2(v2 7→ b2)+ = 5

F3(v3 7→ c1)+ = xF3(v3 7→ c2)+ = y

S = {(v1 7→ a1, v2 7→ b1, v3 7→ c1) = 14}

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 31 / 41

Branch and Bound Bounding function

First-Choice Bounding Function

How to come up with a good bounding evaluation function?

In Operation Research, one often uses Linear Programming to come up
with bounds for Integer Programming Problems.

Let us consider what we can achieve for all soft constraints in isolation
subject to the partial assignment we have already. This function is called
first-choice (fc) bounding function:

ffc(~ai) =
∑

Fj∈Cs

max
ai+1,...,an

Fj (~ai ∪ {vi+1 7→ ai+1, . . . , vn 7→ an})

How could one improve on that?

I Only allow locally consistent partial assignments.

I Do not consider all soft constraints in isolation, but combine them!

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 32 / 41

Branch and Bound Bounding function

Example: Auction again

Let us consider BnB with the first-choice bounding function on our
auction example:

1. ffc({b1 7→ 1}) = 8 + (6 + 5 + 2 + 2) = 23

2. ffc({b1 7→ 1, b2 7→ 0}) = 8 + (5 + 2 + 2) = 17

3. ffc({b1 7→ 1, b2 7→ 0, b3 7→ 0}) = 8 + (2 + 2) = 12

4. ffc({b1 7→ 1, b2 7→ 0, b3 7→ 0, b4 7→ 0}) = 8 + (2) = 10

5. . . .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 33 / 41

Branch and Bound Bounding function

Russian Doll Search: Idea

One way to get more accurate bounding functions is to solve subproblems
and store the optimal results, reusing them for larger problems.

Solve a sequence of n problems using BnB, where in the ith run the last i
variables, i.e., vn−i+1 up to vn, (and the relevant hard and soft
constraints) are considered.

The results of the previous runs can be used:

1. as an initial lower bound,

2. in a heuristic for choosing values, and

3. to generate a more accurate bounding function.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 34 / 41

Branch and Bound Bounding function

Improving the Evaluation Function

I Solve n COPs Oi , (i = 1, . . . , n) over the last i variables
vn−i+1, . . . , vn using BnB and store maximal costs as c∗i .

I In the (n − i + 1)th run, variables vi , . . . , vn are considered.

I Assume that the variables vi , . . . , vi+j are instantiated, denoted by the

partial assignment ~ai
j , and that Ci ,j are all those soft constraints F

such that their scopes have a non-empty intersection with
{vi , . . . , vi+j}.

I Then we use the optimal costs from the n− i − jth run to improve on
the first-choice function:

f (~ai
j) = c∗n−i−j +∑

F∈Ci,j

max
ai+j+1,...,an

F ({vi 7→ ai , . . . , vn 7→ an}).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 35 / 41

Bucket Elimination

5 Bucket Elimination

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 36 / 41

Bucket Elimination

General Idea

I Reformulation of adaptive consistency

I Process constraints to remove variables one by one

I Still exponential in the size of the constraints

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 37 / 41

Bucket Elimination

Algorithm

Algorithm 1 ELIM-OPT

1: Partition the constraints
2: for p = n to 1 do
3: Up = ∪iSi − xp

4: Cp = πUp (./t
i=1 Ci)

5: for Every tuple t over Up do

6: hp = max{ap |(t,ap) satisfies Ci}
∑j

i=1 hi (t, ap)
7: Place hp in latest bucket mentioning a variable in Up

8: end for
9: end for

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 38 / 41

Bucket Elimination

Bucket Elimination: Example

A

B C

D

F1

F2

F3

F4

A

B C

F1

F2

hD

A

B

F1

hC

A

hB

Fj = maxABCD [F1(A, B) + F2(A, C)
+F3(C ,D) + F4(B,D)]

Fj = maxABCD [F1(A, B) + F2(A, C)
+F3(C ,D) + F4(B,D)]

= maxA maxB [F1(A, B)
+ maxC [F2(A, C)
+ maxD [F3(C ,D) + F4(B,D)]]]

Fj = maxABCD [F1(A, B) + F2(A, C)
+F3(C ,D) + F4(B,D)]

= maxA maxB [F1(A, B)
+ maxC [F2(A, C)
+ maxD [F3(C ,D) + F4(B,D)]]]

= maxA maxB [F1(A, B)

+ maxC [F2(A, C) + hD (B, C)]]

Fj = maxABCD [F1(A, B) + F2(A, C)
+F3(C ,D) + F4(B,D)]

= maxA maxB [F1(A, B)
+ maxC [F2(A, C)
+ maxD [F3(C ,D) + F4(B,D)]]]

= maxA maxB [F1(A, B)

+ maxC [F2(A, C) + hD (B, C)]]

= maxA maxB [F1(A, B) + hC (A, B)]

Fj = maxABCD [F1(A, B) + F2(A, C)
+F3(C ,D) + F4(B,D)]

= maxA maxB [F1(A, B)
+ maxC [F2(A, C)
+ maxD [F3(C ,D) + F4(B,D)]]]

= maxA maxB [F1(A, B)

+ maxC [F2(A, C) + hD (B, C)]]

= maxA maxB [F1(A, B) + hC (A, B)]

= maxA[hB (A)]

A B F1(A,B) A C F2(A,C)
1 1 2 2 2 3
2 4 0 1 3 0
2 − 0 1 − 0
− 4 0 − 3 0
− − 0 − − 0

C D F3(C ,D) B D F4(B,D)
3 3 4 4 4 4
2 4 0 1 3 0
2 − 0 1 − 0
− 4 0 − 3 0
− − 0 − − 0

C D F3(C ,D) B D F4(B,D)
3 3 4 4 4 4
2 4 0 1 3 0
2 − 0 1 − 0
− 4 0 − 3 0
− − 0 − − 0

F3(C ,D) + F4(B,D)

B C D F3 + F4

1 3 3 4
− 3 3 4
4 2 4 4
1 2 − 0
− 2 − 0
4 − 4 4
1 − − 0
− − − 0

π(B,C)(F3(C ,D) + F4(B,D))

hD (B,C) =

B C F3 + F4

1 3 4
− 3 4
4 2 4
1 2 0
− 2 0
4 − 4
1 − 0
− − 0

B C hD A C F2(A,C)
1 3 4 2 2 3
− 3 4 1 3 0
4 2 4 1 − 0
1 2 0 − 3 0
− 2 0 − − 0
4 − 4
1 − 0
− − 0

F2(A, C) + hD (B, C)

A B C F2 + hD

1 1 3 4
− 1 3 4
1 − 3 4
− − 3 4
2 4 2 7
2 1 2 3
2 − 2 3
1 4 − 4
− 4 − 4
1 1 − 0
− 1 − 0
1 − − 0
− − − 0

π(A, B)(F2(A, C) + hD (B, C))

hC (A, B) =

A B F2 + hD

1 1 4
− 1 4
1 − 4
− − 4
2 4 7
2 1 3
2 − 3
1 4 4
− 4 4

A B hC A B F1
1 1 4 1 1 2
− 1 4 2 4 0
1 − 4 2 − 0
− − 4 − 4 0
2 4 7 − − 0
2 1 3
2 − 3
1 4 4
− 4 4

F1(A,B) + hC (A,B)

A B F1 + hC

1 1 6
2 4 7
2 − 3
− 4 4
− − 4
1 1 0
− − 0

π(A)(F1(A,B) + hC (A,B))

hB (A) =

A F1 + hC

1 6
2 7
− 4

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 39 / 41

Bucket Elimination

Conclusion & Outlook

I Problems with hard and soft constraints lead to constraint
optimization problems

I These are formalized using cost functions and cost networks

I They can be solved using a reduction to a sequence of CSP problems

I More efficiently, one can search for optimal solutions during the
backtracking search

I Branch and Bound is the method of choice

I Its pruning power depends on the accuracy of the bounding
evaluation function

I Russian doll search can boost its performance

I Further enhancements are possible using constraint inference
techniques (such as bucket elimination).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 40 / 41

Bucket Elimination

Literature

Rina Dechter.
Constraint Processing,
Chapter 13, Morgan Kaufmann, 2003

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 17, 2012 41 / 41

	Motivation
	Cost Networks
	Soft constraints
	Branch and Bound
	Bounding function

	Bucket Elimination

