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Motivation Global Constraints

Global constraints

What are global constraints?

I Type of similar constraint relations . . .

I . . . differing in the number of variables

I Semantically redundant: same constraint can be expressed by a
conjunction of simpler constraints

I Similar structure: can be exploited by constraint solvers

Examples:

I sum constraint, knapsack constraint, element constraint, all-different
constraint, cardinality constraints
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Motivation All-different

All-different constraint

Definition
Let v1, . . . , vn be variables each with a domain Di (1 ≤ i ≤ n).

alldifferent(v1, . . . , vn) :={
(d1, . . . , dn) ∈ D1 × · · · × Dn : di 6= dj for i 6= j

}

The all-different constraint is a simple, but widely used global constraint in
constraint programming.
It allows for compact modeling of CSP problems.
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Motivation All-different

Example: n-Queens Problem

0l0Z
Z0Zq
qZ0Z
Z0l0

Figure: 4-queens problem

Problem representation:
Variables vi for each
column 1, . . . , n;
vi can take a “row value”
1, . . . , n.

No-attack constraints:

vi 6= vj for 1 ≤ i < j ≤ n

vi − vj 6= i − j for 1 ≤ i < j ≤ n

vj − vi 6= i − j for 1 ≤ i < j ≤ n

alldifferent(v1, . . . , vn)

alldifferent(v1 − 1, . . . , vn − n)

alldifferent(v1 + 1, . . . , vn + n)
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Motivation Sum and Cardinality

Sum constraint

Let v1, . . . , vn, z be variables with subsets of Q as domain.
For each vi , let ci ∈ Q be some fixed scalar, c = (c1, . . . , cn).

Definition
The sum constraint is defined as:

sum(v1, . . . , vn, z ; c) :={
(d1, . . . , dn, d) ∈ (

∏
1≤i≤n

Di )× Dz : d =
∑

1≤i≤n
cidi
}
.
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Motivation Sum and Cardinality

Global cardinality constraint

v1, . . . , vn: “assignment variables” with Dvi ⊆ {d∗1 , . . . , d∗m}.
c1, . . . , cm: “count variables” with sets of integers as domains.

Definition
The global cardinality constraint is defined as:

gcc(v1, . . . , vn, c1, . . . , cm) :={
(d1, . . . , dn, o1, . . . , om) ∈

∏
1≤i≤n

Dvi ×
∏

1≤j≤m
Dcj :

for each j , d∗j occurs in (d1, . . . , dn) exactly oj times
}

The global cardinality constraint can be considered a generalization of the
all-different constraint.
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Motivation Circuit

Circuit constraint
Let s = (s1, . . . , sn) be a permutation of {1, . . . , n}.
Define Cs as the smallest set that contains 1 and with each element i also
si .
(s1, . . . , sn) is called cyclic if Cs = {1, . . . , n}.

Definition
Let v1, . . . , vn be variables with domains Di = {1, . . . , n} (1 ≤ i ≤ n).

circuit(v1, . . . , vn) :={
(d1, . . . , dn) ∈ D1 × · · · × Dn : (d1, . . . , dn) is cyclic

}
Given an assignment a = (d1, . . . , dn), define

A := {(vi , vdi ) : di ∈ Di , 1 ≤ i ≤ n} .

Then, a satisfies circuit(v1, . . . , vn) if and only if (V ,A) is a directed
cycle (without proper sub-cycles).
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Motivation Circuit

Example: Traveling Salesperson Problem

Traveling Salesperson
Problem (TSP):

Given a set of n cities and
distances cij between city i and
city j , find the shortest route
that visits all cities and finishes
in the starting city.

TSP is not a constraint
satisfaction problem, but a
constraint optimization
problem . . .
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Motivation Circuit

Constraint optimization problem

Definition
A constraint optimization problem (COP) is a constraint satisfaction
problem together with an objective function f that assign to each variable
assignment a a value f (a) ∈ Q.

I Minimization COP: Find a solution a that minimizes f (a).

I Maximization COP: Find a solution a that maximizes f (a).

I Optimal solution: Solution to a minimization (maximization) COP.

Decision problem associated to a COP:

Given an instance of a COP, (N, f ), and some threshold t ∈ Q, is there a
solution a of P such that f (a) ≥ t (f (a) ≤ t, resp.)?
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Motivation Circuit

The decision problem of TSP

vi : variable for city i with domain Di := {1, . . . , n} \ {i}
(read as: value of vi is the city to be visited next)

cij : distance between cities i and j (may not be symmetric)

t : bound for the total tour length

Then:

circuit(v1, . . . , vn)∑
1≤i≤n

civi ≤ t
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Filtering

Filtering

I Constraint propagation techniques aim at filtering variable domains:
remove useless values (that cannot participate in any solution) as
early as possible.

I Filtering allows false-positives (values are kept though they are
useless),

I . . . ... but not false-negatives (useful values may not be removed).

I A constraint is “good” if it allows significant filtering (pruning of
domain values) with low computational efforts.

I Constraint solver may benefit from exploiting the structure of such
good constraints.
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Filtering Arc consistency

Filtering by enforcing arc consistency

I In general, enforcing generalized arc consistency on a constraint
network requires exponential time w.r.t. the largest arity of some
constraint relation in the network.

Recall: Enforcing generalized arc consistency runs in time

O(erd r ),

where e is the number of constraints and r is the largest arity of some
constraint in the network,

I Though general constraints have often high arity, there exist efficient
methods to enforce generalized arc consistency.

I In the following we consider the all-different constraints.
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Filtering All-different Constraint

Value graphs

Definition
An undirected graph G = 〈V ,E 〉 is bipartite if there exists a partition

S
·
∪ T of V such that for each {x , y} ∈ E , x ∈ S iff y ∈ T .

A directed graph G = 〈V ,A〉 is bipartite if there exists a partition S
·
∪ T

of V such that A ⊆ (S × T ) ∪ (T × S).
G is then written in the form G = 〈S ,T ,E 〉 (resp. G = 〈S ,T ,A〉).

Definition
Let V be a set of variables and D be the union of all domains Dv for
v ∈ V .
The value graph of V is defined as the following bipartite graph:

G = 〈V ,D,E 〉

where E = {{v , d} : v ∈ V , d ∈ Dv}.
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Filtering All-different Constraint

Example: Value graph

Consider variables v1, . . . , v4 with D1 = {b, c , d , e}, D2 = {b, c},
D3 = {a, b, c , d}, D4 = {b, c}.

Value graph:

a b c d e

v1 v2 v3 v4
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Filtering All-different Constraint

Matchings

Let G = 〈V ,E 〉 be an undirected (simple) graph.

Definition
A matching in G is a set M ⊆ E of pairwisely disjoint edges.
A matching M covers a set S ⊆ V if S ⊆

⋃
M, i.e., each v ∈ S is

contained in some edge in M.
v ∈ V is M-free if M does not cover {v}.

Definition
Let M be a matching in G .
A path P = v0, e1 . . . , ek , vk in G is M-alternating if all the edges ei are
alternatingly out of and in M.
An M-alternating path P = v0, e1, . . . , ek , vk is called M-augmenting if v0

and vk are M-free.
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Filtering All-different Constraint

Max-cardinality matching

Let G = 〈V ,E 〉 be a graph and M be a matching in G .

Theorem (Peterson)

M is a max-cardinality matching (i.e., it is a matching of maximum
cardinality) if and only if there is no M-augmenting path in G.

Remark: If M is a matching and v0, . . . , vk is an M-augmenting path, then

M ′ := M ⊕ {{vi , vi+1} : 0 ≤ i ≤ k − 1}

is a matching with |M ′| = |M|+ 1.

Hence a max-cardinality matching can be obtaind by repeatedly searching
for an M-augmenting path in G . . .
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Filtering All-different Constraint

Max-cardinality matching on bipartite graphs

Let G = 〈U,W ,E 〉 be a bipartite graph and M be some matching in G .
Define a directed bipartite graph GM = 〈U,W ,A〉 by

A :=
{

(w , u) : {u,w} ∈ M, u ∈ U,w ∈W
}
∪{

(u,w) : {u,w} ∈ E \M, u ∈ U,w ∈W
}

Each directed path in GM is M-alternating.
If such a path starts and ends in an M-free vertex (starts in U, ends in
W ), it is an M-augmenting path in G .
If no M-augmenting path can be found, M is a max-cardinality matching.

This can be used to compute a max-cardinality matching in time
O(|U| · |A|) (van der Waerden and König)
. . . can be improved to O(

√
|U| · |A|) (Hopcroft and Karp)
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Filtering All-different Constraint

Example: Computing a max-cardinality matching

a b c d e

v1 v2 v3 v4

. . . and max-cardinality matching
M = {{v4, b}, {v2, c}, {v1, e}, {v3, a}}
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Filtering All-different Constraint

All-different constraint and matching

Let V = {v1, . . . , vn} be a set of variables and G be the value graph of V .
Let (d1, . . . , dn) be a variable assignment.

Lemma
(d1, . . . , dn) ∈ alldifferent(v1, . . . , vn) if and only if
M = {{v1, d1}, . . . , {vn, dn}} is a matching in G.

a b c d e

v1 v2 v3 v4
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Filtering All-different Constraint

Arc-consistent all-different constraint

Lemma
The constraint alldifferent(v1, . . . , vn) is generalized arc-consistent if
and only if every edge in G belongs to a matching in G that covers V .

Proof.
Simple (exercise!).
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Filtering All-different Constraint

Edges in max-cardinality matchings

Theorem
Let G be a graph and let M be a max-cardinality matching in G.
An edge e belongs to some max-cardinality matching in G if and only if
one of the following conditions holds:

I e ∈ M.

I e is on an even-length M-alternating path starting at an M-free
vertex;

I e is on an even-length M-alternating cycle.
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Filtering All-different Constraint

Enforcing arc consistency on all-different constraints

1. Compute a max-cardinality matching M in the value graph of V
(can be done in time O(m

√
n) where m =

∑
1≤i≤n |Di |)

2. Identify the even M-alternating paths starting in an M-free vertex and the

M-alternating cycles:

2.1 Define dir. bipartite graph G∗
M = 〈V ,DV ,A〉 with A =

{(v , d) : v ∈ V , {v , d} ∈ M}∪ {(d , v) : v ∈ V , {v , d} ∈ E \M}
2.2 Compute the strongly connected components in GM (in time O(n + m))
2.3 Mark acrs between vertices in the same component as “used”:

they belong to an even M-alternating cycle
2.4 Marc arcs as “used” that belong to a M-alternating path in GM that starts in

an M-free vertex (breadth-first search in time O(m)).

3. Update Dv ← Dv \ {d} for all edges {v , d} where the corresponding arc is not
marked as “used”.
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Filtering All-different Constraint

Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Start from max-cardinality matching

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems July 16, 2009 26 / 31

Filtering All-different Constraint

Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Compute strongly connected components
(e.g. by Kosaraju’s algorithm)
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Filtering All-different Constraint

Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

Mark “used” arcs
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Filtering All-different Constraint

Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

. . . and remove unused arcs
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Filtering All-different Constraint

Example: Enforcing arc-consistency

a b c d e

v1 v2 v3 v4

The all-different constraint is now arc-consistent
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