
Constraint Satisfaction Problems
Search and Lookahead

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

June 4/6, 2012

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 1 / 52

Constraint Satisfaction Problems
June 4/6, 2012 — Search and Lookahead

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 2 / 52

Search and Lookahead

I Enforcing consistency is one way of solving constraint networks:
Globally consistent networks can easily be solved in polynomial time.

I However, enforcing global consistency is costly in time and space: As
much space as Ω(kn) may be required to represent an equivalent
globally consistent network in the case of n variables with domain size
k .

I Thus, it is usually advisable to only enforce local consistency (e. g.,
arc consistency or path consistency), and compute a solution through
search through the remaining possibilities.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 3 / 52

State Spaces: Informally

The fundamental abstractions for search are state spaces.
They are defined in terms of:

I states, representing a partial solution to a problem
(which may or may not be extensible to a full solution)

I an initial state from which to search for a solution

I goal states representing solutions

I operators that define how a new state can be obtained from a given
state

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 4 / 52

State Spaces: Formally

Definition (state space)

A state space is a 4-tuple S = 〈S , s0, S?,O〉, where

I S is a finite set of states,

I s0 ∈ S is the initial state,

I S? ⊆ S is the set of goal states, and

I O is a finite set of operators, where each operator o ∈ O is a partial
function on S , i. e. o : S ′ → S for some S ′ ⊆ S .

We say that an operator o is applicable in state s iff o(s) is defined.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 5 / 52

Search

Search is the problem of finding a sequence of operators that transforms
the initial into a goal state.

Definition (solution of a state space)

Let S = 〈S , s0,S?,O〉 be a state space, and let o1, . . . , on ∈ O be an
operator sequence.
Inductively define result states r0, r1, . . . , rn ∈ S ∪ {invalid}:
I r0 := s0

I For i ∈ {1, . . . , n}, if oi is applicable in ri−1, then ri := oi (ri−1).
Otherwise, ri := invalid.

The operator sequence is a solution iff rn ∈ S?.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 6 / 52

Search Graphs and Search Algorithms

I State spaces can be depicted as state graphs: labeled directed graphs
where states are vertices and there is a directed arc from s to s ′ with
label o iff o(s) = s ′ for some operator o.

I There are many classical algorithms for finding solutions in state
graphs, e. g. depth-first search, breadth-first search, iterative
deepening search, or heuristic algorithms like A∗.

I These algorithms offer different trade-offs in terms of runtime and
memory usage.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 7 / 52

State Spaces for Constraint Networks

The state spaces for constraint networks usually have two special
properties:

I The search graphs are trees (i. e., there is exactly one path from the
initial state to any reachable search state).

I All solutions are at the same level of the tree.

Due to these properties, variations of depth-first search are usually the
method of choice for solving constraint networks.

We will now define state spaces for constraint networks.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 8 / 52

Backtracking

Backtracking traverses the search space of partial instantiations in a
depth-first manner in two phases:

I forward phase: variables are selected in sequence; the current partial
solution is extended by assigning a consistent value to the next
variable (if possible)

I backward phase: if no consistent instantiation for the current variable
exists, we return to the previous variable.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 9 / 52

Backtracking Algorithm (Recursive Version)
Backtracking(C, a):

Input: a constraint network C = 〈V ,D,C 〉 and
a partial solution a of C
(possible: the empty instantiation a = { })

Output: a solution of C or “inconsistent”

if a is defined for all variables in V :
return a

else select a variable vi for which a is not defined
D ′

i ← Di

while D ′
i is non-empty

select and delete a value x from D ′
i

a′ := a ∪ {vi 7→ x}
if a′ is consistent:

a′′ ← Backtracking(C, a′)
if a′′ is not “inconsistent”:

return a′′

return “inconsistent”

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 10 / 52

Branching strategies

Enumeration The variable v is instantiated in turn to each value in its
domain. First v = d1, then v = d2, etc.

Binary choice points The variable v is instantiated to some value in its
domain. Assuming the value 1 is chosen in our example, two
branches are generated and the constraints v = d1 and
v 6= d1 are posted, respectively.

Domain splitting The domain of the variable v is split in two parts. For
instance, with a domain of size 4. First v = {d1, d2}, then
v = {d3, d4}

Those are identical when constraints are binary. For this lecture, we will
only consider the enumeration branching strategy.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 11 / 52

Backtracking (example)

v1

v2

v3

2, 3, 4

2, 3, 5

2, 5, 6
2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5

2 5 6 2 5 6 2 5 6

2 3 4

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 12 / 52

Backtracking (example)

v1

v2

v3

2, 3, 4

2, 3, 5

2, 5, 6 v2 = 2v2 = 3v2 = 5v2 = 2v2 = 3v2 = 5v2 = 2v2 = 3v2 = 5v2 = 2

v3 = 2v3 = 5v3 = 6 v3 = 2

v1 = 3 v1 = 4

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 13 / 52

Ordered Search Spaces

Let C = 〈V , dom,C 〉 be a constraint network.

Definition (variable ordering)

A variable ordering of C is a permutation of the variable set V .
We write variable orderings in sequence notation: v1, . . . , vn.

Definition (ordered search space)

Let σ = v1, . . . , vn be a variable ordering of C.
The ordered search space of C along ordering σ is the state space obtained
from the unordered search space of C by restricting each operator ovi=ai to
states s with |s| = i − 1.

I In other words, in the initial state, only v1 can be assigned, then only
v2, then only v3, . . .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 14 / 52

The Importance of Good Orderings

I All ordered search spaces for the same constraint network contain the
same set of solution states.

I However, the total number of states can vary dramatically between
different orderings.

I The size of a state space is a (rough) measure for the hardness of
finding a solution, so we are interested in small search spaces.

I One way of measuring the quality of a state space is by counting the
number of dead ends: the fewer, the better.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 15 / 52

Backtracking (example)

v1

v2

v3

2, 3, 4

2, 3, 5

2, 5, 6
2 5 6 2 5 6 2 5 6

2 3 4 2 3 4 2 3 4

2 3 5

v2

v1

v3

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 16 / 52

Unordered Search Space

Definition (unordered search space)

Let C = 〈V , dom,C 〉 be a constraint network.
The unordered search space of C is the following state space:

I states: partial solutions of C (i. e., consistent assignments)

I initial state: the empty assignment ∅
I goal states: solutions of C
I operators: for each v ∈ V and a ∈ dom(v), one operator ov=a as

follows:
I ov=a is applicable in those states s

where v is not defined and s ∪ {(v 7→ a)} is consistent
I ov=a(s) = s ∪ {(v 7→ a)}

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 17 / 52

Unordered Search Space: Intuition

The unordered search space formalizes the systematic construction of
solutions, by consistently extending partial solutions until a solution is
found.

I Later on, we will consider alternative (non-systematic) search
techniques.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 18 / 52

Unordered Search Space: Discussion

In practice, one will only search for solutions in subspaces of the complete
unordered search space:

I Consider a state s where v ∈ V has not been assigned a value. If no
solution can be reached from any successor state for the operators
ov=a (a ∈ dom(v)), then no solution can be reached from s.

I There is no point in trying operators ov ′=a′ for other variables v ′ 6= v
in this case!

I Thus, it is sufficient to consider operators for one particular
unassigned variable in each search state.

I How to decide which variable to use is an important issue. Here, we
first consider static variable orderings.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 19 / 52

Dead Ends

Definition (dead end)

A dead end of a state space is a state which is not a goal state and in
which no operator is applicable.

I In an ordered search space, a dead end is a partial solution that
cannot be consistently extended to the next variable in the ordering.

I In the unordered search space, a dead end is a partial solution that
cannot be consistently extended to any of the remaining variables.

In both cases, this partial solution cannot be part of a solution.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 20 / 52

Backtrack-Free Search Spaces

Definition (backtrack-free)

A state space is called backtrack-free if it contains no dead ends.
A constraint network C is called backtrack-free along variable ordering σ if
the ordered search space of C along σ is backtrack-free.

Definition (backtrack-free (from Dechter))

A state space is called backtrack-free if every leaf node in the
corresponding search graph is a solution.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 21 / 52

Backtrack-Free Networks: Discussion

Definition (backtrack-free ordering)

In the general case, finding a backtrack-free variable ordering σ is in NP.

I Backtrack-free networks are the ideal case for search algorithms.

I Constraint networks are rarely backtrack-free along any ordering in
the way they are specified naturally.

I However, constraint networks can be reformulated (replaced with an
equivalent constraint network) to reduce the number of dead ends.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 22 / 52

Global Consistency and Dead Ends

Lemma
Let C be a constraint network.
The following three statements are equivalent:

I The unordered search space of C is backtrack-free.

I The ordered search space of C is backtrack-free along each ordering σ.

I C is globally consistent.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 23 / 52

Reducing Dead Ends Further

I Replacing constraint networks by tighter, equivalent networks is a
powerful way of reducing dead ends.

I However, one can go much further by also tightening constraints
during search, for example by enforcing local consistency for a given
partial instantiation.

I We will consider such search algorithms soon.

I In general, there is a trade-off between reducing the number of dead
ends and the overhead for consistency reasoning.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 24 / 52

Improvements of Backtracking

I Backtracking suffers from thrashing: partial solutions that cannot be
extended to a full solution may be reprocessed several times (always
leading to a dead end in the search space)

Example

x2

x1

x3

x4
6=6=

6= With D = a, b.
The instantiation x1 7→ a and
x3 7→ b will lead to repeated
inconsistency on x4 while the real
cause of inconsistency is x2.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 25 / 52

Look-Ahead and Look-Back

I Look-ahead: invoked when next variable or next value is selected. For
example:

I Which variable should be instantiated next?
 prefer variables that impose tighter constraints on the rest of the
search space

I Which value should be chosen for the next variable?
 maximize the number of options for future assignments

I Look-back: invoked when the backtracking step is performed after
reaching a dead end. For example:

I How deep should we backtrack?
 avoid irrelevant backtrack points (by analyzing reasons for the dead
end and jumping back to the source of failure)

I How can we learn from dead ends?
 record reasons for dead ends as new constraints so that the same
inconsistencies can be avoided at later stages of the search

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 26 / 52

Backtracking with Look-Ahead
LookAhead(C, a):

Input: a constraint network C = 〈V ,D,C〉 and
a partial solution a of C
(possible: the empty instantiation a = { })

Output: a solution of C or “inconsistent”
SelectValue(vi , a, C): procedure that selects and deletes a

consistent value x ∈ Di ; side-effect: C is refined;
returns 0, if all a ∪ {vi 7→ x} are inconsistent

if a is defined for all variables in V :
return a

else select a variable vi for which a is not defined
C′ ← C, D ′

i ← Di // (work on a copy)
while D ′

i is non-empty
x , C′ ← SelectValue(vi , a, C′)
if x 6= 0:

a′ ← LookAhead(C′, a ∪ {vi 7→ x})
if a′ is not “inconsistent”:

return a′

return “inconsistent”

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 27 / 52

Arc-consistency based Lookahead

1. Forward Checking (O(e.k2))

2. Partial Lookahead (O(e.k3)) also known as Arc-consistency.

3. Full Lookahead (O(e.k3))

4. Real Full Lookahead (O(e.k3)) also known as MAC.

where k is the cardinality of the largest domain and e is the number of
constraints.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 28 / 52

SelectValue-ForwardChecking

SelectValue-ForwardChecking(vi , a, C):

select and delete x from Di

for each vj sharing a constraint with vi for which a is not defined
D ′

j ← Dj // (work on a copy)
for each value y ∈ D ′

j

if not consistent(a ∪ {vi 7→ x , vj 7→ y})
remove y from D ′

j

if D ′
j is empty // (vi 7→ x leads to a dead end)
return 0

else Dj ← D ′
j // (propagate refined Dj)

return x

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 29 / 52

SelectValue-PartialLookAhead

SelectValue-PartialLookAhead(vi , a, C):

select and delete x from Di

for each vj (j 6= i) for which a is not defined
D ′

j ← Dj // (work on a copy)
for each vk (k, j < k ≤ n) for which a is not defined

for each value y ∈ D ′
j

if there is no value z ∈ Dk such that
consistent(a ∪ {vi 7→ x , vj 7→ y , vk 7→ z})

remove y from D ′
j

if D ′
j is empty // (vi 7→ x leads to a dead end)
return 0

else Dj ← D ′
j // (propagate refined Dj)

return x

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 30 / 52

SelectValue-FullLookAhead

SelectValue-FullLookAhead(vi , a, C):

select and delete x from Di

for each vj (j 6= i) for which a is not defined
D ′

j ← Dj // (work on a copy)
for each vk (k, i < k ≤ n) for which a is not defined

for each value y ∈ D ′
j

if there is no value z ∈ Dk such that
consistent(a ∪ {vi 7→ x , vj 7→ y , vk 7→ z})

remove y from D ′
j

if D ′
j is empty // (vi 7→ x leads to a dead end)
return 0

else Dj ← D ′
j // (propagate refined Dj)

return x

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 31 / 52

SelectValue-RealFullLookAhead

SelectValue-RealFullLookAhead(vi , a, C):

select and delete x from Di

repeat
for each vj (j 6= i) for which a is not defined

D ′
j ← Dj // (work on a copy)

for each vk (k 6= i , j) for which a is not defined
for each value y ∈ D ′

j

if there is no value z ∈ Dk such that
consistent(a ∪ {vi 7→ x , vj 7→ y , vk 7→ z})

remove y from D ′
j

if D ′
j is empty // (vi 7→ x leads to a dead end)
return 0

else Dj ← D ′
j // (propagate refined Dj)

until no value was removed
return x

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 32 / 52

LookAhead Example (No Lookahead)

Example

s1

s2 s4

s3

s5

Red Blue Green

s1

s2

s3

s4

s5

Initial State

Red Blue Green

s1 O

s2

s3

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4

s5

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4 O

s5

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4 O

s5 O

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4 O

s5 O

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4 O

s5 O

Decision

Red Blue Green

s1 O

s2 O

s3 O

s4 O

s5

Boooooring

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 33 / 52

LookAhead Example (Forward Checking)

Example

s1

s2 s4

s3

s5

Red Blue Green

s1

s2

s3

s4

s5

Initial State

Red Blue Green

s1 O

s2

s3

s4

s5

Decision

Red Blue Green

s1 O

s2 X

s3

s4 X

s5 X

Propagation

Red Blue Green

s1 O

s2 X O

s3

s4 X

s5 X

Decision

Red Blue Green

s1 O

s2 X O

s3 X

s4 X

s5 X X

Propagation

Red Blue Green

s1 O

s2 X O

s3 X O

s4 X

s5 X X

Decision

Red Blue Green

s1 O

s2 X O

s3 X O

s4 X X

s5 X X X

Propagation

Red Blue Green

s1 O

s2 X O

s3 O X

s4 X

s5 X X

Decision

Red Blue Green

s1 O

s2 X O

s3 O X

s4 X O

s5 X X

Decision

Red Blue Green

s1 O

s2 X O

s3 O X

s4 X O

s5 X X O

Decision

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 34 / 52

LookAhead Example (RealFullLookAhead)

Example

s1

s2 s4

s3

s5

Red Blue Green

s1

s2

s3

s4

s5

Initial State

Red Blue Green

s1 O

s2

s3

s4

s5

Decision

Red Blue Green

s1 O

s2 X

s3

s4 X

s5 X

Propagation

Red Blue Green

s1 O

s2 X O

s3

s4 X

s5 X

Decision

Red Blue Green

s1 O

s2 X O

s3 X

s4 X

s5 X X

Propagation

Red Blue Green

s1 O

s2 X O

s3 X

s4 X

s5 X X O

Propagation

Red Blue Green

s1 O

s2 X O

s3 X X

s4 X X

s5 X X O

Propagation

Red Blue Green

s1 O

s2 X O

s3 O X X

s4 X O X

s5 X X O

Propagation

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 35 / 52

Arc-consistency based Lookahead

1. Forward Checking (O(e.k2))

2. Partial Lookahead (O(e.k3))

3. Full Lookahead (O(e.k3))

4. Real Full Lookahead (O(e.k3))

where k is the cardinality of the largest domain and e is the number of
constraints.

Remark
Keeping the balance between pruning the search space and cost of
LookAhead. Good tradeoffs are nowadays:

I Forward Checking

I Real Full LookAhead

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 36 / 52

Further SelectValue Functions

Dynamic look-ahead value orderings: estimate likelihood that a
non-rejected value leads to a solution. For example:

I MinConflicts (MC): prefer a value that removes the smallest number
of values from the domains of future variables

I MaxDomainSize (MD): prefer a value that ensures the largest
minimum domain sizes of future variables (i.e., calculate
nx := minvj |D ′j | after assigning vi 7→ x , and ny for vi 7→ y ,
respectively; if nx > ny , then prefer vi 7→ x)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 37 / 52

Choosing a Variable Order

I Backtracking and LookAhead leave the choice of variable ordering
open.

I Ordering greatly affects performance.
 exercises

We distinguish
I Dynamic ordering:

I In each state, decide independently which variable to assign to next.
I Can be seen as search in a subspace of the unordered search space.

I Static ordering:
I A variable ordering σ is fixed in advance.
I Search is conducted in the ordered search space along σ.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 38 / 52

Dynamic Variable Orderings

Common heuristic:

fail-first
Always select a variable whose remaining domain has a minimal number of
elements.

I intuition: few subtrees small search space

I extreme case: only one value left no search
⇒ compare Unit Propagation in DPLL procedure

I Should be combined with a constraint propagation technique such as
Forward Checking or Arc Consistency.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 39 / 52

Static Variable Orderings

Static variable orderings. . .

I lead to no overhead during search

I but are less flexible than dynamic orderings

In practice, they are often very good if chosen properly.

Popular choices:

I max-cardinality ordering

I min-width ordering

I cycle cutset ordering

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 40 / 52

Static Variable Orderings: Max-Cardinality Ordering

max-cardinality ordering

1. Start with an arbitrary variable.

2. Repeatedly add a variable such that the number of constraints whose
scope is a subset of the set of added variables is maximal. Break ties
arbitrarily.

 for the other two ordering strategies, we first need to lay some
foundations

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 41 / 52

Ordered Graphs

Definition (ordered graph)

Let G = 〈V ,E 〉 be a graph.

An ordered graph for G is a tuple 〈V ,E , σ〉, where σ is an ordering
(permutation) of the vertices in V .

As usual, we use sequence notation for the ordering: σ = v1, . . . , vn.
We write v ≺ v ′ iff v precedes v ′ in σ.

The parents of v ∈ V in the ordered graph are the neighbors that precede
it: {u ∈ V | u ≺ v , {u, v} ∈ E}.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 42 / 52

Width of a Graph

Definition (width)

The width of a vertex v of an ordered graph is the number of parents of v .

The width of an ordered graph is the maximal width of its vertices.

The width of a graph G is the minimal width of all ordered graphs for G .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 43 / 52

Graphs of Width 1

Theorem
A graph with at least one edge has width 1 iff it is a forest (i.e., iff it
contains no cycles).

Proof.
A graph with at least one edge has at least width 1.
(⇒): If a graph has a cycle consisting of vertices C , then in any ordering
σ, one of the vertices in C will appear last. This vertex will have width at
least 2. Thus, the width of the ordering cannot be 1.
(⇐): Consider a graph 〈V ,E 〉 with no cycles. In every connected
component, pick an arbitrary vertex; these are called root nodes.
Construct ordered graph 〈V ,E , σ〉 by putting root nodes first in σ, then
nodes with distance 1 from a root node, then distance 2, 3, etc. This
ordered graph has width 1.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 44 / 52

Significance of Width

For finding solutions to constraint networks, we are interested in the width
of the primal constraint graph.

I The width of a graph is a (rough) difficulty measure.
I For width 1, we can make this more precise (next slide).
I In general, there is a provable relationship between solution effort and a

closely related measure called induced width.

I The ordering that leads to an ordered graph of minimal width is
usually a good static variable ordering.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 45 / 52

Constraint Graphs with Width 1

Theorem
Let C be a constraint network whose primal constraint graph has width 1.
Then C can be solved in polynomial time.

Note: Such a constraint network must be binary, as constraints of higher
arity ≥ 3 induce cycles in the primal constraint graph.

Lemma
Let C be an arc-consistent constraint network whose primal constraint
graph has width 1, and where all variable domains are non-empty. Then C
is backtrack-free along any ordering with width 1.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 46 / 52

Constraint Graphs with Width 1 (ctd.)

Proof of the lemma.
Let C be such a constraint network, and let σ = v1, . . . , vn be a width-1
ordering for C. We must show that all partial solutions of the form
{v1 7→ a1, . . . , vi 7→ ai} for 0 ≤ i < n can be consistently extended to
variable vi+1.
Since σ has width 1, the width of vi+1 is 0 or 1.

I vi+1 has width 0: There is no constraint between vi+1 and any
assigned variable, so any value in the (non-empty) domain of vi+1 is a
consistent extension.

I vi+1 has width 1: There is exactly one variable vj ∈ {v1, . . . , vi} with
a constraint between vj and vi+1. For every choice (vj 7→ aj), there
must be a consistent choice (vi+1 7→ ai+1) because of arc consistency.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 47 / 52

Constraint Graphs with Width 1 (ctd.)

Proof of the theorem.
We can enforce arc consistency and compute a width 1 ordering in
polynomial time. If the resulting network has any empty variable domains,
it is trivially unsolvable. Otherwise, by the lemma, it can be solved in
polynomial time by the Backtracking procedure.

Remark: Enforcing full arc consistency is actually not necessary; a limited
form of consistency is sufficient. (We do not discuss this further.)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 48 / 52

Static Variable Orderings: Min-Width Ordering

min-width ordering

Select a variable ordering such that the resulting ordered constraint graph
has minimal width among all choices.

Remark: Can be computed efficiently by a greedy algorithm:

1. Choose a vertex v with minimal degree and remove it from the graph.

2. Recursively compute an ordering for the remaining graph, and place v
after all other vertices.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 49 / 52

Static Variable Orderings: Cycle Cutset Ordering

Definition (cycle cutset)

Let G = 〈V ,E 〉 be a graph.
A cycle cutset for G is a vertex set V ′ ⊆ V such that the subgraph
induced by V \ V ′ has no cycles.

cycle cutset ordering

1. Compute a (preferably small) cycle cutset V ′.

2. First order all variables in V ′ (using any ordering strategy).

3. Then order the remaining variables, using a width-1 ordering for the
subnetwork where the variables in V ′ are removed.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 50 / 52

Cycle Cutsets: Remarks

I If the network is binary and the search algorithm enforces arc
consistency after assigning to the cutset variables, no further search is
needed at this point.

 runtime O(k |V ′| · p(‖C‖)) for some polynomial p

I However, finding minimum cycle cutsets is NP-hard.

I Even finding approximate solutions is provably hard.

I However, in practice good cutsets can usually be found.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 51 / 52

Literature

Rina Dechter.
Constraint Processing,
Chapters 4 and 5, Morgan Kaufmann, 2003

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems June 4/6, 2012 52 / 52

