
Constraint Satisfaction Problems
Enforcing Consistency

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

May 9/21/23, 2012

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 1 / 54

Constraint Satisfaction Problems
May 9/21/23, 2012 — Enforcing Consistency

1 Arc Consistency

2 Path Consistency

3 Higher Levels of i -Consistency

4 Extensions of Arc Consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 2 / 54

Enforcing consistency

I The more explicit and tight constraint networks are, the more
restricted is the search space of partial solutions.

I Idea: infer new constraints without “removing” (by methods called
local consistency enforcing, bounded consistency inference, constraint
propagation).

I Consistency-enforcing algorithms aim at assisting search: How can we
extend a given partial solution of a small subnetwork to a partial
solution of a larger subnetwork?

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 3 / 54

Arc Consistency

1 Arc Consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 4 / 54

Arc Consistency

Some useful conventions

I In what follows we will always assume that the variables of a
constraint network appear in some order.

I Further, we assume that C does not contain unary constraints, i.e.,
constraints in C are always relations with arity n > 1,
but we allow that the domains Di are possibly empty.

This is no restriction, since we can rewrite Di :

Di ← Di ∩ Rvi

and then remove Rvi from the network.

Di will be referred to as domains, unary constraint, or domain
constraint.

I We write constraints with scheme (vi , . . . , vj , . . . vk) in the form
Ri ...j ...k .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 5 / 54

Arc Consistency

Arc consistency

Let N = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A variable vi is arc-consistent relative to variable vj if for each value
ai ∈ Di , there exists an aj ∈ Dj with (ai , aj) ∈ Rij (in case that Rij

exists in C).

(b) An “arc constraint” Rij is arc-consistent if vi is arc- consistent relative
to vj and vj is arc-consistent rel. to vi .

(c) A network N is arc-consistent if all its arc constraints are
arc-consistent.

Lemma
Checking whether a network N = 〈V ,D,C 〉 is arc-consistent requires at
most e · k2 operations (where e is the number of its binary constraints and
k is an upper bound of its domain sizes).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 6 / 54

Arc Consistency

Example

Consider a constraint network with two variables v1 and v2, domains
D1 = D2 = {1, 2, 3}, and the binary constraint expressed by v1 < v2.

1

2

3

1

2

3

v1 v2

Figure: A network that is not arc-consistent

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 7 / 54

Arc Consistency

Revising a single domain

Revise (vi , vj):

Input: a network with two variables vi , vj ,
domains Di and Dj , and constraint Rij

Result: a network with refined Di such that vi
is arc-consistent relative to vj

for each ai ∈ Di

if there is no aj ∈ Dj with (ai , aj) ∈ Rij

then remove ai from Di

endif
endfor

This is equivalent to applying:

Di ← Di ∩ πi (Rij ./ Dj)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 8 / 54

Arc Consistency

Revising a single domain

Lemma
The complexity of Revise is O(k2), where k is an upper bound of the
domain sizes.

Note: With a simple modification of the Revise algorithm one could
improve to O(t), where t is the maximal number of tuples occurring in
one of the binary constraints in the network.

11

22

33

1

2

3

v1 v2

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 9 / 54

Arc Consistency

Enforcing arc consistency: AC1

AC1(N):

Input: a constraint network N = 〈V ,D,C 〉
Result: N arc-consistent, but equivalent to input network

repeat
for each arc {vi , vj} with Rij ∈ C

Revise(vi , vj)
Revise(vj , vi)

endfor
until no domain is changed

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 10 / 54

Arc Consistency

Enforcing arc consistency: AC1

Lemma
Let N be a constraint network with n variables, each with a domain of size
≤ k, and e binary constraints.
Applying AC1 on the network runs in time O(e · n · k3).

Proof.
One cycle through all binary constraints takes O(e · k2). In the worst case,
one cycle just removes one value from one domain. Moreover, there are at
most n · k values. This results in an upper bound of O(e · n · k3).

Note: If the input network is already arc-consistent, then AC1 runs in time
O(e · k2).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 11 / 54

Arc Consistency

Example: AC1
Consider a constraint network with three variables v1, v2, and v3, domains
D1 = D2 = {1, 2, 3}, and the binary constraints expressed by v1 < v2 and
v2 < v3.

1

22

33

11

2

33

11

22

3

v1

v2

v3

Note: Enforcing arc consistency may already be sufficient to show that a
constraint network is inconsistent. For example, add the constraint
v3 < v1 to the network just considered.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 12 / 54

Arc Consistency

Enforcing arc consistency: AC3
Idea: no need to process all constraints if only a few domains have changed.

Operate on a queue of constraints to be processed.

AC3(N):

Input: a constraint network N = 〈V ,D,C 〉
Result: an equivalent, but arc-consistent network

for each pair vi , vj that occurs in a constraint Rij

queue← queue ∪ {(vi , vj), (vj , vi)}
endfor
while queue is not empty

select and remove (vi , vj) from queue
Revise(vi , vj)
if Revise(vi , vj) changes Di

then queue← queue ∪ {(vk , vi) : k 6= i , k 6= j}
endif

endwhile

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 13 / 54

Arc Consistency

Enforcing arc consistency: AC3

Lemma
Let N be a constraint network with n variables, each with a domain of size
≤ k, and e binary constraints.
Applying AC3 on the network runs in time O(e · k3).

Proof.
Consider a single constraint. Each time, when it is reintroduced into the
queue, the domain of one of its variables must have been changed. Since
there are at most 2 · k values, AC3 processes each constraint at most 2 · k
times. Because we have e constraints and processing of each is in time
O(k2), we obtain O(e · k3).

Note: If the input network is arc-consistent, then AC3 runs in time
O(e · k2).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 14 / 54

Arc Consistency

Enforcing arc consistency: AC3

Example: Consider a constraint network with 3 variables v1, v2, v3 with
domains D1 = {2, 4} and D2 = D3 = {2, 5}, and two constraints expressed
by v3|v1 and v3|v2 (“divides”).

2,4v1 2,5 v2

2,5v3 Queue

(v1, v3)
(v3, v1)
(v2, v3)
(v3, v2)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 15 / 54

Arc Consistency

Enforcing arc consistency: AC4

I To verify that a network is arc-consistent needs e · k2 operations.

I The following algorithm AC4 achieves optimal performance, . . .

I at the cost of “best case performance”, which is Ω(e · k2).

Idea:

I Associate to each value ai in the domain of variable vi the amount of
support from variable vj (i.e., the number of values in Dj that are consistent
with ai);

I remove a value ai if it looses support from any other variable

Details:

I Q: queue of unsupported variable-value pairs;

I counter(vi , ai , vj): amount of support for ai from vj ;

I S [vj , aj]: set containing variable-value pairs (vi , ai) (with i 6= j) supported by
(vj , aj).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 16 / 54

Arc Consistency

Enforcing arc consistency: AC4
AC4(N):

Input: a constraint network N = 〈V ,D,C〉
Result: an equivalent, but arc-consistent network

Q ← ∅;
S [vj , aj]← ∅, counter(vi , ai , vj)← 0 for all Rij ∈ C , ai ∈ Di , aj ∈ Dj

for each Rij ∈ C , ai ∈ Di

for each aj ∈ Dj

if (ai , aj) ∈ Rij then
increment counter(vi , ai , vj) and add (vi , ai) to S [vj , aj]

if counter(vi , ai , vj) = 0 then
add (vi , ai) to Q and remove ai from Di

while Q is not empty
select and remove (vj , aj) from Q
for each (vi , ai) in S [vj , aj]

if ai ∈ Di then
decrement counter(vi , ai , vj)
if counter(vi , ai , vj) = 0 then

add (vi , ai) to Q and remove ai from Di

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 17 / 54

Arc Consistency

Example: AC4
Consider the same network as for AC3.
Constraints: v3|v1 and v3|v2.

2,4v1 2,5 v2

2,5v3

The initialization steps yield:

S [v3, 2] = {(v1, 2), (v1, 4), (v2, 2)} S [v3, 5] = {(v2, 5)}
S [v2, 2] = {(v3, 2)} S [v2, 5] = {(v3, 5)}
S [v1, 2] = {(v3, 2)} S [v1, 4] = {(v3, 2)}

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 18 / 54

Arc Consistency

Example: AC4
The initialization steps yield:

S [v3, 2] = {(v1, 2), (v1, 4), (v2, 2)} S [v3, 5] = {(v2, 5)}
S [v2, 2] = {(v3, 2)} S [v2, 5] = {(v3, 5)}
S [v1, 2] = {(v3, 2)} S [v1, 4] = {(v3, 2)}

Furthermore:

counter(v3, 2, v1) = 2 and counter(v3, 5, v1) = 0.

All other counters are 1 (note: we only need consider counters between
connected variables).

Q = {(v3, 5)} and D3 = {2}.

When (v3, 5) is selected (and removed) from Q, we obtain
counter(v2, 5, v3) = 0. (v2, 5) is added to Q and 5 deleted from D2. Then
(v2, 5) is selected from Q. (v2, 5) has only support for (v3, 5), but 5 has
already been removed from D3, . . .

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 19 / 54

Arc Consistency

Enforcing arc consistency: AC2001

I Fine-grained algorithms (like AC4) directly propagate the removal of
a value (vi , ai) to values (vj , aj) which were supported by (vi , ai)

I . . . while coarse-grained algorithms (like AC3) propagate changes on
the level of the domains only

I Nevertheless coarse-grained algorithms have advantages:
no need for additional data structures S [vj , aj] (costs for initialization
and maintenance)

I AC2001 is a coarse-grained method: works like AC3, but with a
different revise function: achieves optimal run time O(e · k2).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 20 / 54

Arc Consistency

Revise2001 in AC2001

I Assume orderings on each of the domains (use dummy value nil smaller than
all domain values)

I AC2001 first initializes and maintains pointers Last(vi , ai , vj)← nil

Revise2001(vi , vj):

Input: a network with two variables vi , vj ,
domains Di and Dj , and constraint Rij

Result: a network with a refined domain Di

for each ai in Di with Last(vi , ai , vj) /∈ Dj

aj ← the smallest value a in Dj with
a > Last(vi , ai , vj) and (ai , a) ∈ Rij

if aj exists then
Last(vi , ai , vj)← aj

else
remove ai from Di

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 21 / 54

Path Consistency

2 Path Consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 22 / 54

Path Consistency

Beyond arc consistency

I Sometimes “enforcing arc consistency” is sufficient for detecting
inconsistent (unsolvable) networks; but . . .

I enforcing arc consistency is not complete for deciding consistency of
networks; because . . .

I inferences rely only on domain constraints and single binary
constraints defined on the domains.

⇒ We consider further concepts of local consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 23 / 54

Path Consistency

Path consistency

Definition

(a) A binary constraint Rij for variables vi , vj is path-consistent relative to
a third variable vk if for every pair (ai , aj) ∈ Rij , there exists an
ak ∈ Dk such that (ai , ak) ∈ Rik and (ak , aj) ∈ Rkj .

(b) A pair of distinct variables vi , vj is path-consistent relative to variable
vk if any instantiation a of {vi , vj} with (a(vi), a(vj)) ∈ Rij can be
extended to an instantiation a′ of {vi , vj , vk} such that
(a′(vi), a

′(vk)) ∈ Rik and (a′(vk), a′(vj)) ∈ Rkj (“extended” means:
a = a′|{vi ,vj}).

(c) A set of distinct variables {vi , vj , vk} is path-consistent if any pair of
these variables is path-consistent relative to the omitted third variable.

(d) A constraint network is path-consistent if all its three-element subsets
of variables are path-consistent.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 24 / 54

Path Consistency

An example

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

6=

Figure: This network is arc-consistent, but not path-consistent.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 25 / 54

Path Consistency

Revising a path

Revise-3({vi , vj}, vk):

Input: a binary network 〈V ,D,C 〉 with variables vi , vj , vk
Result: a revised constraint Rij path-consistent with vk

for each pair (ai , aj) ∈ Rij

if there is no ak ∈ Dk such that (ai , ak) ∈ Rik

and (aj , ak) ∈ Rjk

then remove (ai , aj) from Rij

endif
endfor

This is equivalent to applying:

Rij ← Rij ∩ πij(Rik ./ Dk ./ Rkj)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 26 / 54

Path Consistency

Revising a path: Properties

Lemma
When applied to a constraint network N, procedure Revise-3({vi , vj}, vk):

I does not do anything if the pair vi , vj is path-consistent relative to
vk , and otherwise

I transforms the network into an equivalent form
where the pair vi , vj is path-consistent relative to vk .

Proof.
From the definition of path consistency.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 27 / 54

Path Consistency

Revising a path: Complexity

Lemma
Let t be the maximal number of tuples in one of the binary constraints,
and let k be an upper bound for the domain sizes.

The worst-case runtime of Revise-3 is O(t · k).
The best-case runtime of Revise-3 is Ω(t).

With respect to k , the complexity of Revise-3 can also be expressed as
O(k3) in the worst and Ω(k2) in the best case.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 28 / 54

Path Consistency

Enforcing path consistency: PC1

PC1(N):

Input: a constraint network N = 〈V ,D,C 〉
Result: an equivalent, path-consistent network

repeat
for each (ordered) triple of variables vi , vj , vk :

Revise-3({vi , vj}, vk)
endfor

until no constraint is changed

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 29 / 54

Path Consistency

Enforcing path consistency: Soundness of PC1

Lemma
When applied to a constraint network N, the PC1 algorithm computes a
path-consistent constraint network which is equivalent to N.

Proof.
Follows directly from the properties of Revise-3.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 30 / 54

Path Consistency

Enforcing path consistency: Complexity of PC1

Lemma
Let N be a constraint network with n variables, each with a domain of size
≤ k. Let t be an upper bound of the number of tuples in one of the binary
constraints in C.

The worst-case runtime of PC1 on this network is O(n5 · t2 · k).
The best-case runtime of PC1 on this network is Ω(n3 · t).

The runtime bounds can also be stated as O(n5 · k5) and Ω(n3 · k2),
respectively.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 31 / 54

Path Consistency

Enforcing path consistency: Complexity of PC1

Proof (worst case).

In each iteration of the outer loop in PC1, only one value pair might be
removed from one of the constraints. Hence the number of iterations may
be as large as O(n2 · t).
Processing a specific triple of constraints (there are O(n3) many such
triples) costs O(t · k).
Hence each iteration costs O(n3 · t · k).

Proof (best case).

In the best case, the network is already path-consistent and only one
iteration through the outer loop is needed. There are Ω(n3) calls to
Revise-3, each requiring time Ω(t) in the best case.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 32 / 54

Path Consistency

Enforcing path consistency: PC2

PC2(N):

Input: a constraint network N = 〈V ,D,C 〉
Result: an equivalent, path-consistent network N ′

queue← {(i , k , j) : 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k 6= i , k 6= j}
while queue is not empty

select and remove a triple (i , k , j) from queue
Revise-3({vi , vj}, vk)
if Rij has changed then

queue← queue ∪ {(l , i , j), (l , j , i) : 1 ≤ l ≤ n, l 6= i , j}
endif

endwhile

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 33 / 54

Path Consistency

Enforcing path consistency: Soundness of PC2

Lemma
When applied to a constraint network N, the PC2 algorithm computes a
path-consistent constraint network which is equivalent to N.

Proof.
Equivalence follows directly from the properties of Revise-3.
To see that the remaining constraint network is path-consistent, verify the
following invariant:

Before and after each iteration of the while-loop, for each pair
vi , vj which is not path-consistent relative to vk , one of the
triples (i , k , j) and (j , k , i) is contained in the queue.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 34 / 54

Path Consistency

Enforcing path consistency: Complexity of PC2

Lemma
Let N be a constraint network with n variables, each with a domain of size
≤ k. Let t be an upper bound of the number of tuples in one of the binary
constraints in N.

The worst-case runtime of PC2 on this network is O(n3 · t2 · k).
The best-case runtime of PC2 on this network is Ω(n3 · t).

Because of t ≤ k2, the runtime bounds can also be stated as O(n3 · k5)
and Ω(n3 · k2), respectively.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 35 / 54

Path Consistency

Enforcing path consistency: Complexity of PC2

Proof (worst case).

There are initially O(n3) elements in the queue. Whenever some
constraint Rij is reduced, which can happen at most O(n2 · t) many times,
O(n) elements are added to the queue. Thus, the total number of
elements added to the queue is bounded by O(n3 · t).
Each iteration of the while loop removes an element from the queue, so
there are at most O(n3 · t) iterations and hence at most O(n3 · t) calls to
Revise-3, each requiring time O(t · k), for a total runtime bound of
O(n3 · t2 · k).

Proof (best case).

Similar to PC1.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 36 / 54

Path Consistency

Arc and path consistency: Overview

Worst Case Best Case

AC1 O(n · k · e · t) Ω(e · k)

AC3 O(e · k · t) Ω(e · k)

AC4 O(e · k2) Ω(e · k2)

PC1 O(n5 · t2 · k) Ω(n3 · t)

PC2 O(n3 · t2 · k) Ω(n3 · t)

PC4∗ O(n3 · t · k) Ω(n3 · t · k)
∗not discussed in this lecture

Remark: O(n3 · t · k) is the optimal (worst-case) runtime for enforcing
path consistency, i.e., there are (arbitrarily large) constraint networks for
which no better algorithm exists.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 37 / 54

i-Consistency

3 Higher Levels of i -Consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 38 / 54

i-Consistency

Higher levels of i -consistency

The local consistency notions presented so far can be roughly summarized
as follows:

I Arc consistency: Every consistent assignment to a single variable can
be consistently extended to any second variable.

I Path consistency: Every consistent assignment to two variables can
be consistently extended to any third variable.

(Side remark: This is a bit of an oversimplification because we ignored
k-ary constraints with k ≥ 3 so far.)

It is easy to see that the general idea of local consistency can be readily
extended to larger variable sets.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 39 / 54

i-Consistency

i -Consistency

Let N = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A relation RS ∈ C with scope S of size i − 1 is i-consistent relative to
variable vi /∈ S if for every tuple t ∈ RS , there exists an a ∈ Di such
that (t, a) is consistent.

(b) A constraint network is i-consistent if any consistent instantiation of
i − 1 (distinct) variables v1, . . . , vi−1 of the network can be extended
to a consistent instantiation of the variables v1, . . . , vi , where vi is any
variable in V distinct from v1, . . . , vi−1.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 40 / 54

i-Consistency

Global consistency

Definition

I A network N is strongly i-consistent if it is j-consistent for each j ≤ i .

I A network N with n variables is globally consistent if it is strongly
n-consistent.

Note: Solutions to globally consistent networks can be found without
search. (How?)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 41 / 54

i-Consistency

Arc/path consistency vs. 2/3-consistency

Note:

I 2-consistency coincides with arc consistency.

I For networks containing binary constraints only, 3-consistency
coincides with path consistency.

I Each 3-consistent network is path-consistent.

I The converse is not true: For networks with constraints of arity ≥ 3,
3-consistency is stricter than path consistency.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 42 / 54

i-Consistency

3-Consistency: Examples

Example

V = {v1, v2, v3}
D1 = D2 = D3 = {0, 1}
R123 = {(0, 0, 0)}

Example

V = {v1, v2, v3}
D1 = D2 = D3 = {0, 1}
R123 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
R12 = R13 = R23 = {(0, 1), (1, 0), (1, 1)}

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 43 / 54

i-Consistency

Revise-i
Revise-i({v1, . . . , vi−1}, vi):

Input: a network 〈V ,D,C 〉 and a constraint RS

with scope S = {v1, . . . , vi−1}
Result: a constraint RS which is i-consistent rel. to vi

for each instantiation ai−1 ∈ RS

if there is no ai ∈ Di such that (ai−1, ai)
is consistent
then remove ai−1 from RS

endif
endfor

I RS can be the universal relation wrt. S .

I If the input network is binary, then Revise-i runs in time O(k i).

I In general, Revise-i runs in time O((2 · k)i), since O(2i) constraints must be
processed for each tuple.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 44 / 54

i-Consistency

i -Consistency: Algorithm

Enforce i-Consistency(N):

Input: a constraint network N = 〈V ,D,C 〉.
Result: an i-consistent network equivalent to N.

repeat
for each subset of S ⊆ V of size i − 1 and each vi /∈ S

Revise-i({v1, . . . , vi−1}, vi)
endfor

until no constraint is changed

The Revise-i call can equivalently be stated as follows:
Let S be the set of all subsets of {v1, . . . , vi} that contain vi and occur as scopes
of some constraint in the network. Then apply

RS ← RS ∩ πS(./S′∈S RS′).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 45 / 54

i-Consistency

i -Consistency: Complexity

Lemma
Let N be a constraint network with n variables, each with a domain of size
≤ k. When applied to N, the “Enforce i-Consistency” algorithm runs in
time O(2i · (n · k)2i−1).

Proof.
Each call to Revise-i requires time O((2 · k)i). In each iteration of the
outer loop, O(ni) combinations of S and vi need to be processed. If only
one tuple is removed from one constraint in each iteration up to the final
one, the outer loop may need to iterate O(ni−1 · k i−1) times.
This leads to an overall runtime of O(2i · (n · k)2i−1).

Note: Improvements similar to AC4 and PC4 exist and achieve a
worst-case runtime of O(ni · k i).

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 46 / 54

i-Consistency

i -Consistency: Comparison to ACx and PCx

Worst Case

i-consistency, i = 2 O(n3 · k3)
AC1 O(n · k · e · t) = O(n3 · k3)
AC3 O(e · k · t) = O(n2 · k3)
AC4 O(n2 · k2)

improved i-consistency∗, i = 2 O(n2 · k2)

i-consistency, i = 3 O(n5 · k5)
PC1 O(n5 · t2 · k) = O(n5 · k5)
PC2 O(n3 · t2 · k) = O(n3 · k5)
PC4∗ O(n3 · k3)

improved i-consistency∗, i = 3 O(n3 · k3)
∗not discussed in this lecture

Remark: O(ni · k i) is the optimal (worst-case) runtime for enforcing
i-consistency, i.e., there are (arbitrarily large) constraint networks for
which no better algorithm exists.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 47 / 54

AC Extensions

4 Extensions of Arc Consistency

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 48 / 54

AC Extensions

Extensions of Arc consistency

I General i-consistency is powerful, but expensive to enforce.

I Usually, arc consistency and path consistency offer a good
compromise between pruning power and computational overhead.

I However, they are of limited usefulness for constraints on more than
two variables.

Example

Consider a constraint network with three integer variables v1, v2, v3 ≥ 0
and the constraints v3 ≥ 13 and v1 + v2 + v3 ≤ 15.
We should be able to infer v1 ≤ 2 and v2 ≤ 2, but regular arc consistency
is not enough!

 Consider generalizations of arc consistency to non-binary constraints.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 49 / 54

AC Extensions

Generalized arc consistency

Let N = 〈V ,D,C 〉 be a constraint network.

Definition

(a) A variable vi is (generalized) arc-consistent relative to a constraint
(S ,R) ∈ C with vi in S = (v1, . . . , vn) if for every value ai ∈ Di there
exists a tuple a ∈ R ∩ (D1 × · · · × Dn) with a[i] = ai , i.e.,

Di ⊆ πi (R ∩ (D1 × · · · × Dn)).

(b) A constraint (S ,R) ∈ C is (generalized) arc-consistent if all variables
in its scope S are generalized arc-consistent relative to R.

(c) A network N is (generalized) arc-consistent if all its constraints are
generalized arc-consistent.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 50 / 54

AC Extensions

Generalized arc consistency: Update rule

To enforce generalized arc consistency, repeatedly apply

Di ← Di ∩ πi (RS ./ DS\{vi})

Note how this generalizes the usual arc consistency update rule:

Di ← Di ∩ πi (Rij ./ Dj)

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 51 / 54

AC Extensions

Alternatives to generalized arc consistency

I Like arc consistency, generalized arc consistency propagates
constraints by considering a single constraint at a time.

I In particular, it considers how assignments to each individual variable
are restricted by the values allowed for the other variables
participating in the constraint.

I Alternatively, we can consider how each individual variable restricts
the values allowed for the other variables participating in the
constraint:

RS\{vi} ← RS\{vi} ∩ πS\{vi}(RS ./ Di)

(relational arc consistency)

I Note that in the case of binary constraints, these two cases are the
same, so both approaches are natural generalizations of (binary) arc
consistency.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 52 / 54

AC Extensions

Generalizations of arc consistency: Comparison

AC: Di ← Di ∩ πi (Rij ./ Dj)

generalized AC: Di ← Di ∩ πi (RS ./ DS\{vi})

relational AC: RS\{vi} ← RS\{vi} ∩ πS\{vi}(RS ./ Di)

Example

Consider a constraint network with three integer variables v1, v2, v3 ≥ 0
and the constraints v3 ≥ 13 and v1 + v2 + v3 ≤ 15.

I Generalized AC infers v1 ≤ 2, v2 ≤ 2.

I Relational AC infers v1 + v2 ≤ 2.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 53 / 54

AC Extensions

Literature
Christian Bessiere.
Constraint propagataion,
Chapter 3 of Handbook of Constraint Programming, 2006

Rina Dechter.
Constraint Processing,
Chapter 3, Morgan Kaufmann, 2003

Alan K. Mackworth.
Constraint satisfaction.
In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages
205–211. Wiley, Chichester, England, 1987.

Alan K. Mackworth.
Consistency in networks of relations.
Artificial Intelligence, 8:99–118, 1977.

Ugo Montanari.
Networks of constraints: fundamental properties and applications to picture
processing.
Information Science, 7:95–132, 1974.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 9/21/23, 2012 54 / 54

	Arc Consistency
	Path Consistency
	Higher Levels of i-Consistency
	Extensions of Arc Consistency

