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Constraint networks

Definition

A constraint network is a triple

N = 〈V,dom, C〉
where:

V is a non-empty and finite set of variables;

dom is a function that assigns to each variable v ∈ V a
non-empty set dom(v) (dom(v) is called the domain of v,
elements of dom(v) are called values);

C is a set of relations over variables of V (called
constraints), i.e., each constraint is a relation Rx1,...,xm

over some scheme S = (x1, . . . , xm) of variables in V .

The set of constraint schemes {S1, . . . St} is called network
scheme.
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Constraint networks

If we assume an ordering of the variables in V , we can write
networks more compactly:

Definition

A constraint network is a triple

N = 〈V,D,C〉
where:

V = (v1, . . . , vn) is a non-empty and finite sequence of
variables;

D = (D1, . . . , Dn) is a sequence of domains for V (Di is
the domain of variable vi);

C is a set of constraints Rx where x = (vi1 , . . . , vim) is a
scheme of variables in V and R ⊆ Di1 × · · · ×Dim .
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Example: 4-queens problem

The 4-queens problem can be represented as single constraint
network.
For example, consider variables v1, . . . , v4 (each associated to a
column of the 4× 4-chess board).
Each variable vi has as its domain Di = {1, . . . , 4} (conceived of as
the row positions of a queen in column i).

v1 v2 v3 v4
1

2

3

4

Define then binary constraints (thus en-
coding “non-attacking queen positions”):

Rv1,v2 := {(1, 3), (1, 4), (2, 4), (3, 1),
(4, 1), (4, 2)}

Rv1,v3 := {(1, 2), (1, 4), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 1), (4, 3)}

. . .
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Example: 4-queens problem

The 4-queens problem can be represented as single constraint
network.
For example, consider variables v1, . . . , v4 (each associated to a
column of the 4× 4-chess board).
Each variable vi has as its domain Di = {1, . . . , 4} (conceived of as
the row positions of a queen in column i).

v1 v2 v3 v4
1

2

3

4

Define then binary constraints (thus en-
coding “non-attacking queen positions”):

Rv1,v2 := {(1, 3), (1, 4), (2, 4), (3, 1),
(4, 1), (4, 2)}

Rv1,v3 := {(1, 2), (1, 4), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 1), (4, 3)}

. . .
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Example: 4-queens problem

The 4-queens problem can be represented as single constraint
network.
For example, consider variables v1, . . . , v4 (each associated to a
column of the 4× 4-chess board).
Each variable vi has as its domain Di = {1, . . . , 4} (conceived of as
the row positions of a queen in column i).

v1 v2 v3 v4
1
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4

Define then binary constraints (thus en-
coding “non-attacking queen positions”):

Rv1,v2 := {(1, 3), (1, 4), (2, 4), (3, 1),
(4, 1), (4, 2)}
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and Wölfl

Constraint
Networks

Constraint
networks

Solution

Normalized
Constraint
Networks

Deduction

Minimal
Network

Projection
Networks

Constraint
Networks and
Graphs

Solving
Constraint
Networks

Example: Graph colorability

k-Colorability of a graph G can be represented as a constraint
network of the following form:

V = {vi : vi is a vertex in G}
Di = {1, . . . , k} (vi ∈ V )

C = {((vi, vj), 6=) : {vi, vj} is an edge of G}
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Example: Graph colorability

k-Colorability of a graph G can be represented as a constraint
network of the following form:

V = {vi : vi is a vertex in G}
Di = {1, . . . , k} (vi ∈ V )

C = {((vi, vj), 6=) : {vi, vj} is an edge of G}

red
blue

v1

red
blue

v2
red
blue

v3

6=
6=

6= Constraint networks with
binary constraints only can
be represented by a
directed labeled graph
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Example: Graph colorability

k-Colorability of a graph G can be represented as a constraint
network of the following form:

V = {vi : vi is a vertex in G}
Di = {1, . . . , k} (vi ∈ V )

C = {((vi, vj), 6=) : {vi, vj} is an edge of G}

red
blue

v1

red
blue

v2
red
blue

v3

6= 6=
Constraint networks with
binary constraints only can
be represented by a
directed labeled graph
(even: an undirected graph
if all constraints are
symmetric).
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Solution of a constraint network

Definition

A solution of a constraint network N = 〈V,D,C〉 is a
(variable) assignment

a : V →
⋃

i : vi∈V
Di

such that

(a) a(vi) ∈ Di, for each vi ∈ V ,

(b) (a(x1), . . . , a(xm)) ∈ R for each constraints Rx1,...,xm in
C.

N is called solvable (or: satisfiable) if N has a solution.

Sol(N) denotes the set of all solutions of N .
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Instantiation, partial solution

Let N = 〈V,D,C〉 be a constraint network.

Definition

(a) An instantiation of a subset V ′ of V is an assignment
a : V ′ →

⋃
i : vi∈V ′ Di with a(vi) ∈ Di.

(b) An instantiation a of V ′ is called partial solution if a
satisfies each constraint RS in C with S ⊆ V ′.
We also say: a is consistent relative to N .

(c) For an instantiation a of a subset V ′ = {x1, . . . , xm} and a
constraint RS with scope S ⊆ V ′, let

a[S] := (a(x1), . . . , a(xm)).

Hence a solution is an instantiation of all variables in V that is
consistent relative to N .



Constraint
Satisfaction

Problems

Nebel, Hué
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Instantiation, solution

Note:

(a) An instantiation of variables in V ′ ⊆ V , a, is a partial
solution (consistent relative to N) iff

a[S] ∈ R, for each constraint R with scope S ⊆ V ′.
(b) Not every partial solution is part of a (full) solution, i.e.,

there may be partial solutions of a constraint network that
cannot be extended to a solution. For the 4-queens
problem, for example,

v1 v2 v3 v4

1 q

2 q

3

4 q
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Normalized constraint network

Let N = 〈V,D,C〉 be a constraint network.
Due to our definition it is possible that C contains constraints

Rvi1 ,...,vik
and Svj1 ,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1 ,...,vjk from C and rewriting Rvi1 ,...,vik
as follows:

Rvi1 ,...,vik
← Rvi1 ,...,vik

∩ πvi1 ,...,vik (Svj1 ,...,vjk ).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. This results in a
constraint network that contains at most one constraint for
each subset of variables. Such a network is called a normalized
constraint network.
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Normalized constraint network

Let N = 〈V,D,C〉 be a constraint network.
Due to our definition it is possible that C contains constraints

Rvi1 ,...,vik
and Svj1 ,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1 ,...,vjk from C and rewriting Rvi1 ,...,vik
as follows:

Rvi1 ,...,vik
← Rvi1 ,...,vik

∩ πvi1 ,...,vik (Svj1 ,...,vjk ).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. This results in a
constraint network that contains at most one constraint for
each subset of variables. Such a network is called a normalized
constraint network.
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Normalized constraint network

Let N = 〈V,D,C〉 be a constraint network.
Due to our definition it is possible that C contains constraints

Rvi1 ,...,vik
and Svj1 ,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the
network by deleting Svj1 ,...,vjk from C and rewriting Rvi1 ,...,vik
as follows:

Rvi1 ,...,vik
← Rvi1 ,...,vik

∩ πvi1 ,...,vik (Svj1 ,...,vjk ).

Given a fixed order on the set of variables V , we can
systematically delete-and-refine constraints. This results in a
constraint network that contains at most one constraint for
each subset of variables. Such a network is called a normalized
constraint network.
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Equivalence

Let N and N ′ be constraint networks on the same set of
variables and on the same domains for each variable.

Definition

N and N ′ are called equivalent if they have the same set of
solutions.

Example:

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

red
blue

v1

red
blue

v2

red
blue

v3

6= 6=

=



Constraint
Satisfaction

Problems

Nebel, Hué
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Equivalence

Let N and N ′ be constraint networks on the same set of
variables and on the same domains for each variable.

Definition

N and N ′ are called equivalent if they have the same set of
solutions.

Example:
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Tightness

Let N and N ′ be (normalized) constraint networks on the same
set of variables and on the same domains for each variable.

Definition

N is as tight as N ′ if for each constraint RS of N ,

(a) N ′ has no constraint with the same scope as RS , or

(b) R ⊆ πS(R′S′), where R′S′ is the constraint of N ′ with the
same scope as RS .

1,2,3 v1

1,2,3

v2

1,2,3

v3

≥

1,2,3 v1

1,2,3

v2

1,2,3

v3

< 6=
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Tightness

Let N and N ′ be (normalized) constraint networks on the same
set of variables and on the same domains for each variable.

Definition

N is as tight as N ′ if for each constraint RS of N ,

(a) N ′ has no constraint with the same scope as RS , or

(b) R ⊆ πS(R′S′), where R′S′ is the constraint of N ′ with the
same scope as RS .

Clearly, if N ′ is as tight as N , then Sol(N ′) ⊆ Sol(N).

Constraint tightness has a large influence on the efficiency
of constraint satisfaction.

Warning: Different concepts of tightness can be found in
the literature

Here: Tightness does not account for comparing
constraints with different arities
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Intersection of networks

Definition

The intersection of N and N ′, N ∩N ′, is the network defined
by intersecting for each scope the constraints RS ∈ C and
R′S′ ∈ C ′ with the same scope, i.e., modulo a suitable
permutation of the constraint schemes,

R′′S := RS ∩R′S .

If for a scope S only one of the networks contains a constraint,
then we set:

R′′S := RS (or := R′S , resp.)

Lemma

If N and N ′ are equivalent networks, then N ∩N ′ is equivalent
to both networks and as tight as both networks.
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Intersection of networks

Definition

The intersection of N and N ′, N ∩N ′, is the network defined
by intersecting for each scope the constraints RS ∈ C and
R′S′ ∈ C ′ with the same scope, i.e., modulo a suitable
permutation of the constraint schemes,

R′′S := RS ∩R′S .

If for a scope S only one of the networks contains a constraint,
then we set:

R′′S := RS (or := R′S , resp.)

Lemma

If N and N ′ are equivalent networks, then N ∩N ′ is equivalent
to both networks and as tight as both networks.



Constraint
Satisfaction

Problems

Nebel, Hué
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Minimal network

Definition

Let N0 be a constraint network and let N1, . . . , Nk be the set
of all constraint networks (defined on the same set of variables
and the same domains) that are equivalent to N0.⋂

1≤i≤k
Ni

is called the minimal network of N0.

Lemma

The minimal network is equivalent to and as tight as all the
constraint networks Ni. There is no network equivalent to N0

that is tighter than the minimal network.
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Minimal network

Definition

Let N0 be a constraint network and let N1, . . . , Nk be the set
of all constraint networks (defined on the same set of variables
and the same domains) that are equivalent to N0.⋂

1≤i≤k
Ni

is called the minimal network of N0.

Lemma

The minimal network is equivalent to and as tight as all the
constraint networks Ni. There is no network equivalent to N0

that is tighter than the minimal network.
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Projection Networks



Constraint
Satisfaction

Problems

Nebel, Hué
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Projecting constraints

Let RS be a constraint with scheme S = (x1, . . . , xm) (we can
think of RS as a constraint network . . . ).

Definition

The projection network of RS , Proj(RS), is the constraint
network defined by:

V := S, Di := πxi(RS), R
′
xi,xj

:= πxi,xj (RS)

for all variables xi and variable pairs xi, xj .

Consider Rx,y,z with R = {(a, a, b), (a, b, b), (a, b, a)}.
Then Proj(Rx,y,z) consists of the following constraints:
R′

x,y = {(a, a), (a, b)},
R′

x,z = {(a, b), (a, a)}, and
R′

y,z = {(a, b), (b, b), (b, a)}.
In this case: Sol(Proj(Rx,y,z)) = Rx,y,z.
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Projecting constraints

Let RS be a constraint with scheme S = (x1, . . . , xm) (we can
think of RS as a constraint network . . . ).

Definition

The projection network of RS , Proj(RS), is the constraint
network defined by:

V := S, Di := πxi(RS), R
′
xi,xj

:= πxi,xj (RS)

for all variables xi and variable pairs xi, xj .

Consider Rx,y,z with R = {(a, a, b), (a, b, b), (a, b, a)}.
Then Proj(Rx,y,z) consists of the following constraints:
R′

x,y = {(a, a), (a, b)},
R′

x,z = {(a, b), (a, a)}, and
R′

y,z = {(a, b), (b, b), (b, a)}.
In this case: Sol(Proj(Rx,y,z)) = Rx,y,z.
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Projecting constraints

The projection network is an upper approximation by binary
networks in the following sense:

Lemma

Any solution of RS (as a network) defines a solution of
Proj(RS), i.e.,

RS ⊆ Sol(Proj(RS)).

Lemma

Proj(RS) is the “tightest” upper approximation of RS by
binary constraint networks, i.e., there is no binary constraint
network N ′ defined on the variables of RS such that:

R ⊆ Sol(N ′) ( Sol(Proj(RS)).
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Binary representation

Definition

A relation RS with scope S has a binary representation if the
relation (conceived of as a network) is equivalent to Proj(RS).

From the fact that a relation has a binary representation, it
does not follow that all its projections have binary
representations as well (Exercise!).

Definition

A relation RS with scope S is binary decomposable if the
relation itself and all its projections to subsets of S (with at
least 3 elements) have a binary representation.



Constraint
Satisfaction

Problems

Nebel, Hué
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Primal constraint graphs

Let N = 〈V,D,C〉 be a (normalized) constraint network.

Definition

The primal constraint graph of a network N = 〈V,D,C〉 is the
undirected graph

GN := 〈V,EN 〉
where

{u, v} ∈ EN ⇐⇒ {u, v} is a subset of the scope
of some constraint in N .
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Primal constraint graph: Example

Consider a constraint network with variables v1, . . . , v5 and two
ternary constraints Rv1,v2,v3 and Sv3,v4,v5 .

Then the primal constraint graph of the network has the form:

v1 v2

v3

v4 v5

Absence of an edge between two variables/nodes means that
there is no explicit constraint in which both variables
participate.



Constraint
Satisfaction

Problems

Nebel, Hué
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Dual constraint graphs

Definition

The dual constraint graph of a constraint network
N = 〈V,D,C〉 is the labeled graph

DN :=
〈
V ′, EN , l

〉
with

X ∈ V ′ ⇐⇒ X is the scope of some constraint in N

{X,Y } ∈ EN ⇐⇒ X ∩ Y 6= ∅
l : EN → 2V , {X,Y } 7→ X ∩ Y

In the example above, the dual constraint graph is:

v1, v2, v3 v3, v4, v5
v3
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Dual constraint graphs

Definition

The dual constraint graph of a constraint network
N = 〈V,D,C〉 is the labeled graph

DN :=
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V ′, EN , l

〉
with

X ∈ V ′ ⇐⇒ X is the scope of some constraint in N

{X,Y } ∈ EN ⇐⇒ X ∩ Y 6= ∅
l : EN → 2V , {X,Y } 7→ X ∩ Y

In the example above, the dual constraint graph is:

v1, v2, v3 v3, v4, v5
v3
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Constraint hypergraph

Definition

The constraint hypergraph of a constraint network
N = 〈V,D,C〉 is the hypergraph

HN := 〈V,EN 〉

with

X ∈ EN ⇐⇒ X is the scope of some constraint in N .

In the example above (constraint network with variables
v1, . . . , v5 and two ternary constraints Rv1,v2,v3 and Sv3,v4,v5)
the hyperedges of the constraint hypergraph are:

EN =
{
{v1, v2, v3}, {v3, v4, v5}

}
.
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Solving Constraint Networks
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Simple solution strategy: Backtracking search

Backtracking: search systematically for consistent partial
instantiations in a depth-first manner:

forward phase: extend the current partial solution by
assigning a consistent value to some new variable (if
possible)

backward phase: if no consistent instantiation for the
current variable exists, we return to the previous variable.



Constraint
Satisfaction

Problems

Nebel, Hué
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Backtracking algorithm

Backtracking(N, a):

Input: a constraint network N = 〈V,D,C〉 and
a partial assignment a of N
(e.g., the empty instantiation a = { })

Output: a solution of N or “inconsistent”

if a is not consistent with N :
return “inconsistent”

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
for each value x from Di:

a′ := a ∪ {vi 7→ x}
a′′ ← Backtracking(N, a′)
if a′′ is not “inconsistent”:

return a′′

return “inconsistent”
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