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Constraint Networks Constraint networks

Constraint networks

Definition
A constraint network is a triple

N = (V,dom, C)

where:

» V is a non-empty and finite set of variables;

» dom is a function that assigns to each variable v € V a non-empty
set dom(v) (dom(v) is called the domain of v, elements of dom(v)
are called values);

» C is a set of relations over variables of V' (called constraints), i.e.,
each constraint is a relation Ry, . , over some scheme
S =(x1,...,xm) of variables in V.

The set of constraint schemes {S1,...5;} is called network scheme.
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Constraint networks

If we assume an ordering of the variables in V, we can write networks
more compactly:

Definition

A constraint network is a triple

N=(V,D,C)
where:

» V= (wv,...,Vvp) is a non-empty and finite sequence of variables;

» D=(D,...,D,) is a sequence of domains for V (D; is the domain
of variable v;);

» C is a set of constraints Ry where X = (vj, ..., V;,) is a scheme of
variablesin V.and RC Dy x --- x D; .
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Example: 4-queens problem

The 4-queens problem can be represented as single constraint network.

For example, consider variables vy, ..., v4 (each associated to a column of the
4 x 4-chess board).
Each variable v; has as its domain D; = {1,...,4} (conceived of as the row

positions of a queen in column ).

Vi Vo vz W Define then binary constraints (thus en-
1 coding “non-attacking queen positions"):
2 RV1,V2 = {(1’3)7(1a4)7(274)a(3»1);
(4,1),(4,2)}
3 Raws = {(1,2),(1,4),(2,1),(2,3),
4 (352)3(374)7(471)5(43 3)}
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Example: Graph colorability
k-Colorability of a graph G can be represented as a constraint network of
the following form:

V ={v;:v;is avertex in G}

Di={1,...,k} (vie V)

C ={((vi,vj),#) : {vi,vj} is an edge of G}

%1 Vi
red red
blue blue
+ C ait networks with binary
\ié # fonstraints@nly can be
7 represented by adrected labeled
red red i W red graph red V3
blue blue blue

(even: an undPitgd graph if all
constraints are Ssymmetric).
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Solution of a constraint network

Definition
A solution of a constraint network N = (V, D, C) is a (variable)
assignment

aV— |J b

i vieVvV

such that
(a) a(v;) € D;, for each v; € V,
(b) (a(x1),...,a(xm)) € R for each constraints Ry, ., in C.

N is called solvable (or: satisfiable) if N has a solution.

Sol(N) denotes the set of all solutions of N.
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Constraint Networks  Solution

Instantiation, partial solution Instantiation, solution

Note:
Let N = (V, D, C) be a constraint network.
(V.. C) (a) An instantiation of variables in V/ C V, a, is a partial solution
Definition (consistent relative to N) iff

(a) An instantiation of a subset V’ of V is an assignment

_ a[S] € R, for each constraint R with scope S C V'
a . V/ — UI V,‘GV, DI Wlth a(V,') E D,
(b) An instantiation a of V'’ is called partial solution if a satisfies each (b) Not every partial solution is part of a (full) solution, i.e., there may be
constraint Rs in C with S C V. partial solutions of a constraint network that cannot be extended to a
We also say: a is consistent relative to N. solution. For the 4-queens problem, for example,
(c) For an instantiation a of a subset V/ = {xy,...,xn} and a constraint vi V2 vz v
Rs with scope S C V/, let 1] q
3[S] == (a(x1), ..., a(xm))- 2 q
. . . . . . . . . 3
Hence a solution is an instantiation of all variables in V that is consistent
relative to V. 4 q
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Constraint Networks Deduction

Normalized constraint network Equivalence

Let N and N be constraint networks on the same set of variables and on

Let N = (V,D, C) be a constraint network. the same domains for each variable.

Due to our definition it is possible that C contains constraints

Definition
N and N’ are called equivalent if they have the same set of solutions.
RV,'17...7V,'k and Svj17"'7vjk
Example:
where (ji,...,jk) is just a permutation of (i1,. .., ik).
. ) ) C Vi %1
Without changing the set of solutions, we can simplify the network by
deleting S"le"'»"fk from C and rewriting Rvil""’vik as follows: red red
blue blue
Ry v < Ry .v. 0y v (Sv...v ) / \
ll:"'? lk 11""7 Ik 11?"'7 lk j17"'7 jk # # #/ \#
Given a fixed order on the set of variables V, we can systematically g g g g
. . . . . re re re re
delete-and-refine constraints. This results in a constraint network that E—

. ) ) blue blue blue = blue
contains at most one constraint for each subset of variables. Such a v Vs Vo va
network is called a normalized constraint network.
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Tightness Intersection of networks

Let N and N’ be (normalized) constraint networks on the same set of
variables and on the same domains for each variable.

Definition
Definition The intersection of N and N/, NN N, is the network defined by
N is as tight as N’ if for each constraint Rs of N, intersecting for each scope the constraints Rs € C and Rg, € C’ with the
(a) N’ has no constraint with the same scope as Rs, or same scope, i.e., modulo a suitable permutation of the constraint schemes,

(b) R C ms(Rs/), where Rg, is the constraint of N with the same scope

R¢ := Rs N Rs.
as Rs.

If for a scope S only one of the networks contains a constraint, then we
Vi set:
R{:=Rs (or := Rg, resp.)
Lemma
If N and N’ are equivalent networks, then NN N’ is equivalent to both
networks and as tight as both networks.
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> Clearty, if Wisas tight as IV, then Sol( V)T Sol{V):
» Constraint tightness has a large influence on the efficiency of

Constraint Networks Minimal Network Projection Networks

Minimal network 2 Projection Networks

Definition

Let Ny be a constraint network and let Ny, ..., N, be the set of all
constraint networks (defined on the same set of variables and the same
domains) that are equivalent to Np.

AR
1<i<k

is called the minimal network of Njy.

Lemma

The minimal network is equivalent to and as tight as all the constraint
networks N;. There is no network equivalent to Ny that is tighter than the
minimal network.
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Projecting constraints Projecting constraints

The projection network is an upper approximation by binary networks in
Let Rs be a constraint with scheme S = (xi,...,xm) (we can think of Rs the following sense:

as a constraint network .. .).

Lemma
Definition Any solution of Rs (as a network) defines a solution of Proj(Rs), i.e.,
The projection network of Rs, Proj(Rs), is the constraint network defined
by: Rs C Sol(Proj(Rs)).
V=S5, Dj:=my(Rs), R;q,x,- 1= T 5 (Rs)
for all variables x; and variable pairs x;, x;. =
Lemma

Consider Ry, , with R = {(a, a, b), (a, b, b),(a, b, a)}.
Then Proj(Ry.y,z) consists of the following constraints: R, , = {(a, a), (a, b)},
R>/<,z = {(av b)v (aa 2)}, and

Proj(Rs) is the “tightest” upper approximation of Rs by binary constraint
networks, i.e., there is no binary constraint network N’ defined on the

variables of Rs such that:
R)l/,z = {(37 b)?(b’ b)’(bv a)} s
In this case: Sol(Proj(Rx,.z)) = R,z R C Sol(N') € Sol(Proj(Rs)).
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Projection Networks Constraint Networks and Graphs
Binary representation 3 Constraint Networks and Graphs
Definition _ _
A relation Rs with scope S has a binary representation if the relation = Primal Const.ralnt Graphs
(conceived of as a network) is equivalent to Proj(Rs). m Dual Constraint Graph

_ _ o m Constraint Hypergraph
From the fact that a relation has a binary representation, it does not follow

that all its projections have binary representations as well (Exercise!).

Definition

A relation Rs with scope S is binary decomposable if the relation itself and
all its projections to subsets of S (with at least 3 elements) have a binary
representation.
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Primal constraint graphs

Let N = (V, D, C) be a (normalized) constraint network.

Definition
The primal constraint graph of a network N = (V, D, C) is the undirected
graph

Gy = (V, Epn)
where .
{u,v} € Ey <= {u,v} is a subset of the scope
of some constraint in /.
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Constraint Networks and Graphs Primal Constraint Graphs

Primal constraint graph: Example
Consider a constraint network with variables v1, ..., vs and two ternary

constraints Ry, v,,v; and Sy, v, vs-

Then the primal constraint graph of the network has the form:

Absence of an edge between two variables/nodes means that there is no
explicit constraint in which both variables participate.
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Constraint Networks and Graphs Dual Constraint Graph

Dual constraint graphs

Definition
The dual constraint graph of a constraint network N = (V, D, C) is the
labeled graph
DN = <V,, EN, />
with
X € V' <= X is the scope of some constraint in N
{X,)Y}eEy < XNY #0

I Ey—2Y, {X,Y}—=XNY

In the example above, the dual constraint graph is:
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Constraint Networks and Graphs Constraint Hypergraph

Constraint hypergraph

Definition
The constraint hypergraph of a constraint network N = (V, D, C) is the
hypergraph

Hy := (V, Ep)

with
X € Ey <= X is the scope of some constraint in N.

In the example above (constraint network with variables vy, ..., vs and two
ternary constraints Ry, v, v; and Sy, v, vs) the hyperedges of the constraint
hypergraph are:

En = {{v1,vo,v3},{v3,va, s} }.
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4 Solving Constraint Networks

Solving Constraint Networks

Simple solution strategy: Backtracking search

Backtracking: search systematically for consistent partial instantiations in

a depth-first manner:

» forward phase: extend the current partial solution by assigning a
consistent value to some new variable (if possible)

» backward phase: if no consistent instantiation for the current variable

exists, we return to the previous variable.
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Solving Constraint Networks
Backtracking algorithm
Backtracking(N, a):
Input:  a constraint network N = (V, D, C) and
a partial assignment a of N
(e.g., the empty instantiation a = { })
Output: a solution of N or “inconsistent”
if a is not consistent with N:
return “inconsistent”
if a is defined for all variables in V:
return a
select some variable v; for which a is not defined
for each value x from D;:
a=aU{v, — x}
a" + Backtracking(N, a’)
if 2" is not “inconsistent”:
return 3"’
return “inconsistent”
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Solving Constraint Networks
Literature
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Constraint Processing,
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