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Constraint Networks Constraint networks

Constraint networks

Definition
A constraint network is a triple

N = 〈V , dom,C 〉
where:

I V is a non-empty and finite set of variables;

I dom is a function that assigns to each variable v ∈ V a non-empty
set dom(v) (dom(v) is called the domain of v , elements of dom(v)
are called values);

I C is a set of relations over variables of V (called constraints), i.e.,
each constraint is a relation Rx1,...,xm over some scheme
S = (x1, . . . , xm) of variables in V .

The set of constraint schemes {S1, . . .St} is called network scheme.
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Constraint Networks Constraint networks

Constraint networks

If we assume an ordering of the variables in V , we can write networks
more compactly:

Definition
A constraint network is a triple

N = 〈V ,D,C 〉
where:

I V = (v1, . . . , vn) is a non-empty and finite sequence of variables;

I D = (D1, . . . ,Dn) is a sequence of domains for V (Di is the domain
of variable vi );

I C is a set of constraints Rx where x = (vi1 , . . . , vim) is a scheme of
variables in V and R ⊆ Di1 × · · · × Dim .
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Constraint Networks Constraint networks

Example: 4-queens problem

The 4-queens problem can be represented as single constraint network.
For example, consider variables v1, . . . , v4 (each associated to a column of the
4× 4-chess board).
Each variable vi has as its domain Di = {1, . . . , 4} (conceived of as the row
positions of a queen in column i).

v1 v2 v3 v4

1

2

3

4

Define then binary constraints (thus en-
coding “non-attacking queen positions”):

Rv1,v2 := {(1, 3), (1, 4), (2, 4), (3, 1),
(4, 1), (4, 2)}

Rv1,v3 := {(1, 2), (1, 4), (2, 1), (2, 3),
(3, 2), (3, 4), (4, 1), (4, 3)}

. . .
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Constraint Networks Constraint networks

Example: Graph colorability

k-Colorability of a graph G can be represented as a constraint network of
the following form:

V = {vi : vi is a vertex in G}
Di = {1, . . . , k} (vi ∈ V )

C = {((vi , vj), 6=) : {vi , vj} is an edge of G}

red
blue

v1

red
blue

v2
red
blue

v3

6=
6=

6=

red
blue

v1

red
blue

v2
red
blue

v3

6= 6=
Constraint networks with binary
constraints only can be
represented by a directed labeled
graph
(even: an undirected graph if all
constraints are symmetric).
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Constraint Networks Solution

Solution of a constraint network

Definition
A solution of a constraint network N = 〈V ,D,C 〉 is a (variable)
assignment

a : V →
⋃

i : vi∈V
Di

such that

(a) a(vi ) ∈ Di , for each vi ∈ V ,

(b) (a(x1), . . . , a(xm)) ∈ R for each constraints Rx1,...,xm in C .

N is called solvable (or: satisfiable) if N has a solution.

Sol(N) denotes the set of all solutions of N.
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Constraint Networks Solution

Instantiation, partial solution

Let N = 〈V ,D,C 〉 be a constraint network.

Definition

(a) An instantiation of a subset V ′ of V is an assignment
a : V ′ →

⋃
i : vi∈V ′ Di with a(vi ) ∈ Di .

(b) An instantiation a of V ′ is called partial solution if a satisfies each
constraint RS in C with S ⊆ V ′.
We also say: a is consistent relative to N.

(c) For an instantiation a of a subset V ′ = {x1, . . . , xm} and a constraint
RS with scope S ⊆ V ′, let

a[S ] := (a(x1), . . . , a(xm)).

Hence a solution is an instantiation of all variables in V that is consistent
relative to N.
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Constraint Networks Solution

Instantiation, solution
Note:

(a) An instantiation of variables in V ′ ⊆ V , a, is a partial solution
(consistent relative to N) iff

a[S ] ∈ R, for each constraint R with scope S ⊆ V ′.

(b) Not every partial solution is part of a (full) solution, i.e., there may be
partial solutions of a constraint network that cannot be extended to a
solution. For the 4-queens problem, for example,

v1 v2 v3 v4

1 q

2 q

3

4 q
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Constraint Networks Normalized Constraint Networks

Normalized constraint network

Let N = 〈V ,D,C 〉 be a constraint network.
Due to our definition it is possible that C contains constraints

Rvi1 ,...,vik
and Svj1 ,...,vjk

where (j1, . . . , jk) is just a permutation of (i1, . . . , ik).

Without changing the set of solutions, we can simplify the network by
deleting Svj1 ,...,vjk

from C and rewriting Rvi1 ,...,vik
as follows:

Rvi1 ,...,vik
← Rvi1 ,...,vik

∩ πvi1 ,...,vik (Svj1 ,...,vjk
).

Given a fixed order on the set of variables V , we can systematically
delete-and-refine constraints. This results in a constraint network that
contains at most one constraint for each subset of variables. Such a
network is called a normalized constraint network.
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Constraint Networks Deduction

Equivalence
Let N and N ′ be constraint networks on the same set of variables and on
the same domains for each variable.

Definition
N and N ′ are called equivalent if they have the same set of solutions.

Example:
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Constraint Networks Deduction

Tightness
Let N and N ′ be (normalized) constraint networks on the same set of
variables and on the same domains for each variable.

Definition
N is as tight as N ′ if for each constraint RS of N,

(a) N ′ has no constraint with the same scope as RS , or

(b) R ⊆ πS(R ′S ′), where R ′S ′ is the constraint of N ′ with the same scope
as RS .

1,2,3 v1

1,2,3

v2

1,2,3

v3

≥

1,2,3 v1

1,2,3

v2

1,2,3

v3

< 6=

I Clearly, if N ′ is as tight as N, then Sol(N ′) ⊆ Sol(N).
I Constraint tightness has a large influence on the efficiency of

constraint satisfaction.
I Warning: Different concepts of tightness can be found in the literature
I Here: Tightness does not account for comparing constraints with

different arities
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Constraint Networks Deduction

Intersection of networks

Definition
The intersection of N and N ′, N ∩ N ′, is the network defined by
intersecting for each scope the constraints RS ∈ C and R ′S ′ ∈ C ′ with the
same scope, i.e., modulo a suitable permutation of the constraint schemes,

R ′′S := RS ∩ R ′S .

If for a scope S only one of the networks contains a constraint, then we
set:

R ′′S := RS (or := R ′S , resp.)

Lemma
If N and N ′ are equivalent networks, then N ∩ N ′ is equivalent to both
networks and as tight as both networks.
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Constraint Networks Minimal Network

Minimal network

Definition
Let N0 be a constraint network and let N1, . . . ,Nk be the set of all
constraint networks (defined on the same set of variables and the same
domains) that are equivalent to N0.⋂

1≤i≤k
Ni

is called the minimal network of N0.

Lemma
The minimal network is equivalent to and as tight as all the constraint
networks Ni . There is no network equivalent to N0 that is tighter than the
minimal network.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 7, 2012 15 / 28

Projection Networks

2 Projection Networks
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Projection Networks

Projecting constraints

Let RS be a constraint with scheme S = (x1, . . . , xm) (we can think of RS

as a constraint network . . . ).

Definition
The projection network of RS , Proj(RS), is the constraint network defined
by:

V := S , Di := πxi (RS), R ′xi ,xj := πxi ,xj (RS)

for all variables xi and variable pairs xi , xj .

Consider Rx,y ,z with R = {(a, a, b), (a, b, b), (a, b, a)}.
Then Proj(Rx,y ,z) consists of the following constraints: R ′

x,y = {(a, a), (a, b)},
R ′
x,z = {(a, b), (a, a)}, and

R ′
y ,z = {(a, b), (b, b), (b, a)}.

In this case: Sol(Proj(Rx,y ,z)) = Rx,y ,z .
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Projection Networks

Projecting constraints

The projection network is an upper approximation by binary networks in
the following sense:

Lemma
Any solution of RS (as a network) defines a solution of Proj(RS), i.e.,

RS ⊆ Sol(Proj(RS)).

Lemma
Proj(RS) is the “tightest” upper approximation of RS by binary constraint
networks, i.e., there is no binary constraint network N ′ defined on the
variables of RS such that:

R ⊆ Sol(N ′) ( Sol(Proj(RS)).
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Projection Networks

Binary representation

Definition
A relation RS with scope S has a binary representation if the relation
(conceived of as a network) is equivalent to Proj(RS).

From the fact that a relation has a binary representation, it does not follow
that all its projections have binary representations as well (Exercise!).

Definition
A relation RS with scope S is binary decomposable if the relation itself and
all its projections to subsets of S (with at least 3 elements) have a binary
representation.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems May 7, 2012 19 / 28

Constraint Networks and Graphs

3 Constraint Networks and Graphs

Primal Constraint Graphs
Dual Constraint Graph
Constraint Hypergraph
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Constraint Networks and Graphs Primal Constraint Graphs

Primal constraint graphs

Let N = 〈V ,D,C 〉 be a (normalized) constraint network.

Definition
The primal constraint graph of a network N = 〈V ,D,C 〉 is the undirected
graph

GN := 〈V ,EN〉
where

{u, v} ∈ EN ⇐⇒ {u, v} is a subset of the scope
of some constraint in N.
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Constraint Networks and Graphs Primal Constraint Graphs

Primal constraint graph: Example

Consider a constraint network with variables v1, . . . , v5 and two ternary
constraints Rv1,v2,v3 and Sv3,v4,v5 .

Then the primal constraint graph of the network has the form:

v1 v2

v3

v4 v5

Absence of an edge between two variables/nodes means that there is no
explicit constraint in which both variables participate.
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Constraint Networks and Graphs Dual Constraint Graph

Dual constraint graphs

Definition
The dual constraint graph of a constraint network N = 〈V ,D,C 〉 is the
labeled graph

DN :=
〈
V ′,EN , l

〉
with

X ∈ V ′ ⇐⇒ X is the scope of some constraint in N

{X ,Y } ∈ EN ⇐⇒ X ∩ Y 6= ∅
l : EN → 2V , {X ,Y } 7→ X ∩ Y

In the example above, the dual constraint graph is:

v1, v2, v3 v3, v4, v5
v3
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Constraint Networks and Graphs Constraint Hypergraph

Constraint hypergraph

Definition
The constraint hypergraph of a constraint network N = 〈V ,D,C 〉 is the
hypergraph

HN := 〈V ,EN〉

with

X ∈ EN ⇐⇒ X is the scope of some constraint in N.

In the example above (constraint network with variables v1, . . . , v5 and two
ternary constraints Rv1,v2,v3 and Sv3,v4,v5) the hyperedges of the constraint
hypergraph are:

EN =
{
{v1, v2, v3}, {v3, v4, v5}

}
.
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4 Solving Constraint Networks
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Solving Constraint Networks

Simple solution strategy: Backtracking search

Backtracking: search systematically for consistent partial instantiations in
a depth-first manner:

I forward phase: extend the current partial solution by assigning a
consistent value to some new variable (if possible)

I backward phase: if no consistent instantiation for the current variable
exists, we return to the previous variable.
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Solving Constraint Networks

Backtracking algorithm
Backtracking(N, a):

Input: a constraint network N = 〈V ,D,C 〉 and
a partial assignment a of N
(e.g., the empty instantiation a = { })

Output: a solution of N or “inconsistent”

if a is not consistent with N:
return “inconsistent”

if a is defined for all variables in V :
return a

select some variable vi for which a is not defined
for each value x from Di :

a′ := a ∪ {vi 7→ x}
a′′ ← Backtracking(N, a′)
if a′′ is not “inconsistent”:

return a′′

return “inconsistent”
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Solving Constraint Networks

Literature

Rina Dechter.
Constraint Processing,
Chapter 2, Morgan Kaufmann, 2003
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