Constraint Satisfaction Problems

Mathematical Background: Sets, Relations, and Graphs

Bernhard Nebel, Julien Hué, and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg
April 23, 25, and 2012; May 2, 2012

Constraints, sets, relations, graphs

- Formal definition of CSP uses sets and constraints
- Constraints are specific relations that restrict possible solutions
- CSP solving techniques use operations that manipulate sets and relations
- CSP instances can also be represented by various kinds of graphs
- Graph-theoretical notions can be used to describe, e.g., structural properties of constraint networks
- Complexity for solving CSP instances can depend on both the relations used in the constraints and properties of the constraint graphs

Set-theoretical notions

Sets

Sets:

Naive understanding:
a set is a "well-defined" collection of objects.

Principles/Set-theoretical axioms (ZF):

Axioms that describe which objects count as sets and which operations can be used to form new sets

Constraint Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Set-theoretical
principles
Sets and
Boolean algebras
Relations
Graphs
Computational
Complexity

Sets

Sets:
 Sets:

Naive understanding:
a set is a "well-defined" collection of objects.

Sets
Set-theoretical
principles
Sets and
Boolean algebras
Relations
Graphs
Computational
Complexity

Axioms that describe which objects count as sets and which operations can be used to form new sets

Set theory

Some set-theoretical axioms (ZF):

Constraint Satisfaction Problems

Nebel, Hué and Wölfl same elements.

- Empty set: There is a set, \emptyset, with no elements.
- Pairs: For any pair of sets $x, y,\{x, y\}$ is a set.
- Union: For any set x, there exists a set, $\bigcup x$, whose elements are precisely the elements of the elements of x.

Sets
Set-theoretical principles
Sets and
Boolean algebras
Relations
Graphs

- Separation: For any set x and any property $F(y)$, there is a subset of $x,\{y \in x: F(y)\}$, containing precisely the elements y of x for which $F(y)$ holds.
- Power set: For any set x there exists a set 2^{x} such that the elements of 2^{x} are precisely the subsets of x.
- Axiom of choice: Given a set x of pairwise disjoint nonempty sets, there is a set y that contains exactly one element from each member of x.

Set-theoretical notations

Usually, we argue naïvely by using the following notations Boolean operations on sets:

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

$$
\begin{aligned}
A \cup B & :=\{x: x \in A \text { or } x \in B\} \\
A \cap B & :=\{x \in A: x \in B\} \\
A \backslash B & :=\{x \in A: x \notin B\}
\end{aligned}
$$

Subset relation: $A \subseteq B, A \subsetneq B$, etc., are defined as usual.
Power set: $2^{A}:=\{B: B \subseteq A\}$
(Ordered) pairs:

$$
\begin{aligned}
(x, y) & :=\{\{x\},\{x, y\}\} \\
\left(x_{1}, \ldots, x_{n}\right) & :=\left(\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right)
\end{aligned}
$$

Product: $A \times B:=\{(a, b): a \in A$ and $b \in B\}$

Boolean algebra

Definition

A Boolean algebra (with complements) is a set A with
Constraint Satisfaction Problems

Nebel, Hué and Wölfl

- two binary operations \sqcap, ப,
- a unary operation -, and
- two distinct elements 0 and 1 such that for all elements a, b and c of A :

$$
\begin{array}{rlrlrl}
a \sqcup(b \sqcup c) & =(a \sqcup b) \sqcup c & a \sqcap(b \sqcap c) & =(a \sqcap b) \sqcap c & \text { Ass } \\
a \sqcup b & =b \sqcup a & a \sqcap b & =b \sqcap a & \text { Com } \\
a \sqcup(a \sqcap b) & =a & & a \sqcap(a \sqcup b) & =a & \text { Abs } \\
a \sqcup(b \sqcap c) & =(a \sqcup b) \sqcap(a \sqcup c) & a \sqcap(b \sqcup c) & =(a \sqcap b) \sqcup(a \sqcap c)
\end{array}
$$ Dis

$$
a \sqcup-a=1
$$

$$
a \sqcap-a=0
$$

Compl

Set algebras

Definition

A set algebra on a set X is a non-empty subset \mathcal{F} of 2^{X} that is closed under unions, intersections, and complements. $\langle X, \mathcal{F}\rangle$ is called a field of sets.

Notice: a set algebra on X contains X and \emptyset as elements.

Lemma

(a) The power set of any set forms a set algebra.
(b) Each set algebra defines a Boolean algebra.
(c) A finite Boolean algebra can always be represented as a power set, ...
(d) more generally, each Boolean algebra is isomorphic to a field of sets (Stone's representation theorem).

Boolean algebras vs set algebras I

Proof of the lemma.

(a) By applying complement, union, or intersection on subsets of a given set X, we again obtain subsets of X.
(b) A set algebra \mathcal{F} on X contains \emptyset and $X . \bar{A}:=X \backslash A$ is a unary operation on $\mathcal{F} ; \cap$ and \cup are binary operations. Hence, $\langle\mathcal{F}, \cap, \cup,-, \emptyset, X\rangle$ is a structrue that obviously satisifes all properties of a Boolean algebra.

Set-theoretical
(c) One has to show: given a finite Boolean algebra $B=\langle A, \sqcap, \sqcup,-, 0,1\rangle$ there exists a set X such that \ldots

Boolean algebras vs set algebras II

Proof of the lemma (cont'd):

Constraint Satisfaction Problems

Nebel, Hué and WölfI

1. Define a partial order on B :
$a \leq b: \Longleftrightarrow b \sqcap a=a(\Longleftrightarrow b \sqcup a=b \Longleftrightarrow a \sqcap-b=0)$ $a<b: \Longleftrightarrow a \leq b \wedge a \neq b$.
The set of atoms (i.e., non-zero minimal element of B) is def. by:
At $_{B}:=\{a \in A: 0 \leq a \wedge$ there is no $b \in A$ s.t. $0<b<a\}$.
Set-theoretical principles
Sets and
Boolean algebras
Relations
Graphs
Define a map f
Computational
Complexity
Obviously $f(a)=\{a\}$ for each $a \in \operatorname{At}_{B}$
f is an homomornhism of Boolean algehras, i.e., it preserves
Boolean operations: $f(0)=\emptyset, f(1)=X, f(-x)=\overline{f(x)}$
$f(x \sqcap y)=f(x) \cap f(y)$, and $f(x \sqcup y)=f(x) \cup f(y)$.
f is a bijection, i.e. it is injective ("one-to-one") and surjective ("onto")

Boolean algebras vs set algebras II

Proof of the lemma (cont'd):

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

1. Define a partial order on B :
$a \leq b: \Longleftrightarrow b \sqcap a=a(\Longleftrightarrow b \sqcup a=b \Longleftrightarrow a \sqcap-b=0)$
$a<b: \Longleftrightarrow a \leq b \wedge a \neq b$.
The set of atoms (i.e., non-zero minimal element of B) is def. by:
At $_{B}:=\{a \in A: 0 \leq a \wedge$ there is no $b \in A$ s.t. $0<b<a\}$.
Set-theoretical principles
Sets and
Boolean algebras
Relations
Graphs
2. Define a map $f: A \rightarrow 2^{\mathrm{At}_{B}}, x \mapsto\left\{a \in \mathrm{At}_{B}: a \leq x\right\}$.

Obviously $f(a)=\{a\}$ for each $a \in$ At $_{B}$.

Boolean algebras vs set algebras II

Proof of the lemma (cont'd):

Constraint Satisfaction Problems

Nebel, Hué and WölfI

1. Define a partial order on B :
$a \leq b: \Longleftrightarrow b \sqcap a=a(\Longleftrightarrow b \sqcup a=b \Longleftrightarrow a \sqcap-b=0)$
$a<b: \Longleftrightarrow a \leq b \wedge a \neq b$.
The set of atoms (i.e., non-zero minimal element of B) is def. by:

Sets
Set-theoretical principles
Sets and
Boolean algebras
Relations
Graphs
Computational
Complexity

Obviously $f(a)=\{a\}$ for each $a \in$ At $_{B}$.
3. f is an homomorphism of Boolean algebras, i.e., it preserves

Boolean operations: $f(0)=\emptyset, f(1)=X, f(-x)=\overline{f(x)}$, $f(x \sqcap y)=f(x) \cap f(y)$, and $f(x \sqcup y)=f(x) \cup f(y)$.
f is a bijection, i.e., it is injective ("one-to-one") and surjective

Boolean algebras vs set algebras II

Proof of the lemma (cont'd):

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

1. Define a partial order on B :
$a \leq b: \Longleftrightarrow b \sqcap a=a(\Longleftrightarrow b \sqcup a=b \Longleftrightarrow a \sqcap-b=0)$
$a<b: \Longleftrightarrow a \leq b \wedge a \neq b$.
The set of atoms (i.e., non-zero minimal element of B) is def. by:
At $_{B}:=\{a \in A: 0 \leq a \wedge$ there is no $b \in A$ s.t. $0<b<a\}$.
Set-theoretical
principles
Sets and
Boolean algebras
Relations
Graphs
2. Define a map $f: A \rightarrow 2^{\mathrm{At}_{B}}, x \mapsto\left\{a \in \mathrm{At}_{B}: a \leq x\right\}$.

Obviously $f(a)=\{a\}$ for each $a \in \operatorname{At}_{B}$.
3. f is an homomorphism of Boolean algebras, i.e., it preserves

Boolean operations: $f(0)=\emptyset, f(1)=X, f(-x)=\overline{f(x)}$,
$f(x \sqcap y)=f(x) \cap f(y)$, and $f(x \sqcup y)=f(x) \cup f(y)$.
4. f is a bijection, i.e., it is injective ("one-to-one") and surjective ("onto").

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Relations
Relations
Binary Relations
Relations over
Variables
Graphs
Computational
Complexity

Relations

Definition

A relation over sets X_{1}, \ldots, X_{n} is a subset

$$
R \subseteq X_{1} \times \cdots \times X_{n}=: \prod_{1 \leq i \leq n} X_{i}
$$

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

$$
R \subseteq X^{n}:=X \times \cdots \times X \quad(n \text { times })
$$

Since relations are sets, set-theoretical operations (union, intersection, complement) can be applied to relations as well.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Relations
Binary Relations
Relations over
Variables
Graphs
Computational
Complexity

Binary relations

For binary relations on a set X we have some special operations:

Definition

Let R, S be binary (2-ary) relations on X.
The converse of relation R is defined by:

$$
R^{-1}:=\left\{(x, y) \in X^{2}:(y, x) \in R\right\} .
$$

The composition of relations R and S is defined by:

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Relations
Binary Relations
Relations over
Variables
Graphs
Computational
Complexity
$R \circ S:=\left\{(x, z) \in X^{2}: \exists y \in X\right.$ s.t. $(x, y) \in R$ and $\left.(y, z) \in S\right\}$.
The identity relation is:

$$
\Delta_{X}:=\left\{(x, y) \in X^{2}: x=y\right\} .
$$

Operating on binary relations

Lemma

Let X be a non-empty set. Let $\mathcal{R}(X)$ be the set of all binary
Satisfaction Problems

Nebel, Hué relations on X. Then:
(a) $\mathcal{R}(X)$ is a set algebra on $X \times X$.
(b) For all relations $R, S, T \in \mathcal{R}(X)$:

$$
\begin{aligned}
& R \circ(S \circ T)=(R \circ S) \circ T \\
& R \circ(S \cup T)=(R \circ S) \cup(R \circ T) \\
& \Delta_{X} \circ R=R \circ \Delta_{X}=R \\
&\left(R^{-1}\right)^{-1}=R \text { and }(-R)^{-1}=-\left(R^{-1}\right) \\
&(R \cup S)^{-1}=R^{-1} \cup S^{-1} \\
&(R \circ S)^{-1}=S^{-1} \circ R^{-1} \\
&(R \circ S) \cap T^{-1}=\emptyset \text { if and only if }(S \circ T) \cap R^{-1}=\emptyset
\end{aligned}
$$

Sets

Relations

Relations
Binary Relations
Relations over
Variables
Graphs
Computational
Complexity

Constraints, relations, and variables

Constraints can be expressed by relations that restrict value assignments to variables.
Consider variables x_{1}, x_{2}, x_{3} and relations B, C defined by:
Constraint Satisfaction Problems

Nebel, Hué and WölfI

$$
\begin{aligned}
& B=\left\{(x, y, z) \in[0 . .3]^{3}: x<y<z\right\} \\
& C=\left\{(x, y, z) \in[0 . .3]^{3}: x>y>z\right\} .
\end{aligned}
$$

- " $\left(x_{1}, x_{2}, x_{3}\right)$ satisfies B " and " $\left(x_{3}, x_{2}, x_{1}\right)$ satisfies B " express different constraints, while ...
- " $\left(x_{3}, x_{2}, x_{1}\right)$ satisfies B " and " $\left(x_{1}, x_{2}, x_{3}\right)$ satisfies C " essentially express the same constraint.

x_{1}	x_{2}	x_{3}	
0	1	2	
0	1	3	$\not \equiv$
0	2	3	
1	2	3	

x_{3}	x_{2}	x_{1}
0	1	2
0	1	3
0	2	3
1	2	3

\equiv| x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: |
| 2 | 1 | 0 |
| 3 | 1 | 0 |
| 3 | 2 | 0 |
| 3 | 2 | 1 |

Relations over variables

Let V be a set of variables. For $v \in V$, let $\operatorname{dom}(v)$ be a non-empty set (of values), called the domain of v.

Definition

Constraint Satisfaction Problems

Nebel, Hué and WölfI

A relation over (pairwise distinct) variables $v_{1}, \ldots, v_{n} \in V$ is a pair

$$
R_{v_{1}, \ldots, v_{n}}:=\left(\left(v_{1}, \ldots, v_{n}\right), R\right)
$$

where R is a relation over $\operatorname{dom}\left(v_{1}\right), \ldots, \operatorname{dom}\left(v_{n}\right)$.
The sequence $\left(v_{1}, \ldots, v_{n}\right)$ is referred to as the scheme (or: range), the set $\left\{v_{1}, \ldots, v_{n}\right\}$ as the scope, and R as the graph of $R_{v_{1}, \ldots, v_{n}}$.

We will not always distinguish between a relation over variables and its graph (and between scope and scheme), e. g., we write

$$
R_{v_{1}, \ldots, v_{n}} \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{n}\right)
$$

Selections, ...

Let $R_{\bar{v}}=(\bar{v}, R)$ be a relation over variables $\bar{v}=\left(v_{1}, \ldots, v_{n}\right)$.
Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Definition

For any fixed values $a_{1} \in \operatorname{dom}\left(v_{i_{1}}\right), \ldots, a_{k} \in \operatorname{dom}\left(v_{i_{k}}\right)$, define

$$
\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}}(\bar{v}, R):=\left(\bar{v}, R^{\prime}\right)
$$

with

$$
R^{\prime}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R: x_{i_{j}}=a_{j}, \text { for each } 1 \leq j \leq k\right\} .
$$

The (unary) operation $\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}}$ is called selection or restriction.

Projections, . . .

Let $\left(i_{1}, \ldots, i_{k}\right)$ be a k-tuple of pairwise distinct elements of $\{1, \ldots, n\}(k \leq n)$.

Definition

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Given a relation (\bar{v}, R) over \bar{v},

$$
\pi_{v_{i_{1}}, \ldots, v_{i_{k}}}(\bar{v}, R):=\left(\left(v_{i_{1}}, \ldots, v_{i_{k}}\right), R^{\prime}\right)
$$

with

$$
\begin{aligned}
R^{\prime}:=\left\{\bar{y} \in \prod_{1 \leq j \leq k} \operatorname{dom}\left(v_{i_{j}}\right): \bar{y}\right. & =\left(x_{i_{1}}, \ldots, x_{i_{k}}\right), \\
& \text { for some } \left.\left(x_{1}, \ldots, x_{n}\right) \in R\right\}
\end{aligned}
$$

Relations
Binary Relations
Relations over
Variables
Graphs
Computational
Complexity
is a relation over $\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$, called the projection of (\bar{v}, R) on $\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$.

Note: Each permutation of the scheme \bar{v} defines a projection. For binary relations $R=R_{x, y}, R^{-1}=\pi_{y, x}\left(R_{x, y}\right)$.

... Joins

Definition

Consider pairwise distinct variables v_{1}, \ldots, v_{n}.
Let (\bar{v}, R) and $\left(\overline{v^{\prime}}, S\right)$ be relations over variables
Constraint Satisfaction Problems

Nebel, Hué and WölfI $\bar{v}=\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ and $\overline{v^{\prime}}=\left(v_{j_{1}}, \ldots, v_{j_{l}}\right)$, resp., such that $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \cup\left\{v_{j_{1}}, \ldots, v_{j_{l}}\right\}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then

$$
(\bar{v}, R) \bowtie\left(\overline{v^{\prime}}, S\right):=\left(\left(v_{1}, \ldots, v_{n}\right), T\right)
$$

with

$$
T=\left\{\overline { x } \in \prod _ { 1 \leq i \leq n } \operatorname { d o m } (v _ { i }) : (x _ { i _ { 1 } } , \ldots , x _ { i _ { k } }) \in R \text { and } \quad \left(\begin{array}{ll}
& \left.\left(x_{j_{1}}, \ldots, x_{j_{l}}\right) \in S\right\}
\end{array}\right.\right.
$$

is a relation over $\left(v_{1}, \ldots, v_{n}\right)$, the join of (\bar{v}, R) and $\left(\overline{v^{\prime}}, S\right)$.
For binary relations $R=R_{x, y}$ and $S=S_{y, z}$ on the same set,

$$
R \circ S=\pi_{x, z}\left(R_{x, y} \bowtie S_{y, z}\right)
$$

Examples

Consider relations $R:=R_{x_{1}, x_{2}, x_{3}}$ and $S:=S_{x_{2}, x_{3}, x_{4}}$ defined by:
Constraint Satisfaction
Problems
Nebel, Hué
and Wölfl

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c
c	n	n

x_{2}	x_{3}	x_{4}
a	a	1
b	c	2
b	c	3

Then $\sigma_{x_{3}=c}(R), \pi_{x_{2}, x_{3}}(R), \pi_{x_{2}, x_{1}}(R)$, and $R \bowtie S$ are:

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c

$$
\begin{array}{c|cc|cc|c|c|c}
x_{2} & x_{3} \\
\hline b & c \\
b & c & x_{2} & x_{1} \\
\hline b & b & b & c & & x_{1} & x_{2} & x_{3} \\
\hline b & x_{4} \\
\hline n & n & n & c & b & c & 2 \\
& & & b & b & c & 3 \\
& & & c & 2 \\
& & & c & c & 3
\end{array}
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Graphs

Graphs
Undirected Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Undirected graph

Definition

An (undirected, simple) graph is an ordered pair
Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

$$
G:=\langle V, E\rangle
$$

where:

- V is a non-empty set (of vertices, nodes);
- E is a set of two-element subsets $X \subseteq V$ (elements of E are called edges).

Usually, we assume that the graph (i.e., $|V|$) is finite.
In undirected, simple graphs edges are often written as $[u, v]$
Sometimes, one allows E to also contain singleton subsets of V (loops), written as $[v, v]$. But simple graphs are always loopless.

Undirected graph

Definition

An (undirected, simple) graph is an ordered pair
Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

$$
G:=\langle V, E\rangle
$$

Sets
Relations
where:
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Usually, we assume that the graph (i.e., $|V|$) is finite. In undirected, simple graphs edges are often written as $[u, v]$.
Sometimes, one allows E to also contain singleton subsets of V (loops), written as $[v, v]$. But simple graphs are always loopless.

Undirected graph

Definition

An (undirected, simple) graph is an ordered pair
Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

$$
G:=\langle V, E\rangle
$$

Sets
Relations
where:

- V is a non-empty set (of vertices, nodes);
- E is a set of two-element subsets $X \subseteq V$ (elements of E are called edges).

Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Usually, we assume that the graph (i.e., $|V|$) is finite. In undirected, simple graphs edges are often written as $[u, v]$. Sometimes, one allows E to also contain singleton subsets of V (loops), written as $[v, v]$. But simple graphs are always loopless.

A simple undirected graph

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Undirected multi-graph

Often we allow for multiple edges between the same set of end vertices.

Definition

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
An (undirected, multi-) graph is an ordered triple

$$
G:=\langle V, E, \gamma\rangle
$$

where:

- V is non-empty set (of vertices, nodes);
- $\gamma: E \rightarrow\left\{X \in 2^{V}: 1 \leq|X| \leq 2\right\}$.

The elements of E are called edges.
We always assume: $V \cap E=\emptyset$.
The order of a graph is the number of vertices $|V|$. Often, $|E|$ is referred to as the size of G, but often we specify both $n:=|V|$ and $m:=|E|$.

Undirected multi-graph

Often we allow for multiple edges between the same set of end vertices.

Definition

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
An (undirected, multi-) graph is an ordered triple

$$
G:=\langle V, E, \gamma\rangle
$$

where:

- V is non-empty set (of vertices, nodes);
- $\gamma: E \rightarrow\left\{X \in 2^{V}: 1 \leq|X| \leq 2\right\}$.

The elements of E are called edges.
We always assume: $V \cap E=\emptyset$.
The order of a graph is the number of vertices $|V|$. Often, $|E|$ is referred to as the size of G, but often we specify both $n:=|V|$ and $m:=|E|$.

An undirected multi-graph

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Graphs: Some definitions

Definition

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.
(a) If $\gamma(e)=\{u, v\}$ for some $e \in E$, then u and v are called adjacent (or: connected by e).
(b) A path (or: walk) in G is a sequence

$$
\left(v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}\right)
$$

such that $e_{1}, \ldots, e_{k} \in E$ and $\gamma\left(e_{i}\right)=\left\{v_{i-1}, v_{i}\right\}$ (for each $1 \leq i \leq k)$. k is referred to as length, v_{0} as start vertex, and v_{k} as end vertex of the path.
(c) A cycle is a path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ with $v_{0}=v_{k}$ and $k \geq 1$.
(d) A path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ is simple if $e_{i} \neq e_{j}$ for all $i \neq j$.
(e) A path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ is elementary if $v_{1} \neq v_{j}$ for $0 \leq i \neq j \leq k$ (but $v_{0}=v_{k}$ is allowed).

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Paths: An example

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A simple path visiting the nodes B, A, E, D, F

Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.

Definition

(a) G is connected if for each pair of vertices u and v, there exists a path from u to v.
(b) G is complete if any pair of vertices is connected by an edge.
(c) G is a forest if G is cycle-free.
(d) G is a tree if G is cycle-free and connected.

Examples

Constraint Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: Connected, but not complete

Examples

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A not connected graph

Examples

Constraint Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A forest

Examples

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A tree

Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.

Definition

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
Let V^{\prime} be a non-empty subset of V. Then $G\left[V^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma^{\prime}\right\rangle$ with:

$$
E^{\prime}:=\left\{e \in E: \gamma(e) \subseteq V^{\prime}\right\} \text { and } \gamma^{\prime}:=\left.\gamma\right|_{E^{\prime}}
$$

is called the subgraph induced by V^{\prime}.

Definition

Let E^{\prime} be a subset of E. Then $G\left[E^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma \mid E_{E^{\prime}}\right\rangle$ is called the partial graph induced by E^{\prime}

Definition

A cliaue in a graph G is a complete subgraph of G.

Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.

Definition

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
Let V^{\prime} be a non-empty subset of V. Then $G\left[V^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma^{\prime}\right\rangle$ with:

$$
E^{\prime}:=\left\{e \in E: \gamma(e) \subseteq V^{\prime}\right\} \text { and } \gamma^{\prime}:=\left.\gamma\right|_{E^{\prime}}
$$

is called the subgraph induced by V^{\prime}.

Definition

Let E^{\prime} be a subset of E. Then $G\left[E^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma \mid E^{\prime}\right\rangle$ is called the partial graph induced by E^{\prime}.

Definition

A clique in a graph G is a complete subgraph of G.

Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.

Definition

Constraint
Satisfaction Problems

Nebel, Hué and Wölfl
Let V^{\prime} be a non-empty subset of V. Then $G\left[V^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma^{\prime}\right\rangle$ with:

$$
E^{\prime}:=\left\{e \in E: \gamma(e) \subseteq V^{\prime}\right\} \text { and } \gamma^{\prime}:=\left.\gamma\right|_{E^{\prime}}
$$

is called the subgraph induced by V^{\prime}.

Definition

Let E^{\prime} be a subset of E. Then $G\left[E^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma \mid E^{\prime}\right\rangle$ is called the partial graph induced by E^{\prime}.

Definition

A clique in a graph G is a complete subgraph of G.

Examples

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A partial graph

Examples

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A subgraph

Examples

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A clique

Directed Graph

Definition

A directed (multi-) graph (or: digraph) is an ordered tuple

$$
G:=\langle V, A, \alpha, \omega\rangle
$$

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets

where:
Relations

- V is a non-empty set (of vertices or nodes),
- A is a set (elements of A are called arcs, edges, or arrows),
- $\alpha, \omega: A \rightarrow V$ are functions.
$\alpha(a)$ is called the start vertex of $a, \omega(a)$ the end vertex of a.
If G has no parallel $\operatorname{arcs}\left(a, a^{\prime} \in A\right.$ with $\alpha(a)=\alpha\left(a^{\prime}\right)$ and $\omega(a)=\omega\left(a^{\prime}\right)$), we can write A as a set of tuples:

Directed Graph

Definition

A directed (multi-) graph (or: digraph) is an ordered tuple

$$
G:=\langle V, A, \alpha, \omega\rangle
$$

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
where:

- V is a non-empty set (of vertices or nodes),
- A is a set (elements of A are called arcs, edges, or arrows),
- $\alpha, \omega: A \rightarrow V$ are functions.
$\alpha(a)$ is called the start vertex of $a, \omega(a)$ the end vertex of a.
If G has no parallel arcs $\left(a, a^{\prime} \in A\right.$ with $\alpha(a)=\alpha\left(a^{\prime}\right)$ and $\left.\omega(a)=\omega\left(a^{\prime}\right)\right)$, we can write A as a set of tuples:

$$
\left\{(\alpha(a), \omega(a)) \in V^{2}: a \in A\right\}
$$

In that case we use the notation $\langle V, A\rangle$ instead of $\langle V, A, \alpha, \omega\rangle$.

Digraphs: Some notions

Most notions introduced for undirected graphs can easily be

Definition

A path in G is a sequence $\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ such that $a_{1}, \ldots, a_{k} \in A$ and for each $1 \leq i \leq k, \alpha\left(a_{i}\right)=v_{i-1}$ and $\omega\left(a_{i}\right)=v_{i}$.
\square
the outdegree of v, the number of arcs that start from v the indegree of v, the number of arcs that end in v parents of v : nodes with an arc to v childs of v : nodes with an arc from v

Digraphs: Some notions

Most notions introduced for undirected graphs can easily be adapted for directed graphs. For example:

Definition

A path in G is a sequence $\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ such that $a_{1}, \ldots, a_{k} \in A$ and for each $1 \leq i \leq k, \alpha\left(a_{i}\right)=v_{i-1}$ and $\omega\left(a_{i}\right)=v_{i}$.
$g^{+}(v)$: the outdegree of v, the number of arcs that start from v $g^{-}(v)$: the indegree of v, the number of arcs that end in v parents of v : nodes with an arc to v childs of v : nodes with an arc from v

A directed multi-graph

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

A directed multi-graph

Constraint Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A directed graph with a (strongly) connected subgraph

Labeled graphs

Often graphs $G=\langle V, E / A, \ldots\rangle$ are equipped with labeling functions.

Let L be a not-empty set of labels.
Vertex labeling: a function $l: V \rightarrow L$ that assigns to each v a vertex label $l(v) \in L$.

Edge labeling: a function $l: E \rightarrow L$ that assigns to each $e \in E$
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Example: In route planning, one can represent street networks
Computational
Complexity as digraphs with an arc labeling (expressing travelling distance between places/nodes)

The label set may be equipped with further structures. In the route planning example, the labeling function is understood as a distance function (metric space).

Labeled graphs

Often graphs $G=\langle V, E / A, \ldots\rangle$ are equipped with labeling
Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
Let L be a not-empty set of labels.
Vertex labeling: a function $l: V \rightarrow L$ that assigns to each v a vertex label $l(v) \in L$.
Edge labeling: a function $l: E \rightarrow L$ that assigns to each $e \in E$ a label $l(v) \in L$.

Example: In route planning, one can represent street networks as digraphs with an arc labeling (expressing travelling distance between places/nodes)

The label set may be equipped with further structures. In the route planning example, the labeling function is understood as a distance function (metric space).

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Labeled graphs

Often graphs $G=\langle V, E / A, \ldots\rangle$ are equipped with labeling
Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
Let L be a not-empty set of labels.
Vertex labeling: a function $l: V \rightarrow L$ that assigns to each v a vertex label $l(v) \in L$.
Edge labeling: a function $l: E \rightarrow L$ that assigns to each $e \in E$ a label $l(v) \in L$.

Example: In route planning, one can represent street networks as digraphs with an arc labeling (expressing travelling distance between places/nodes).

The label set may be equipped with further structures. In the route planning example, the labeling function is understood as a distance function (metric space).

Labeled graphs

Often graphs $G=\langle V, E / A, \ldots\rangle$ are equipped with labeling
Constraint
Satisfaction Problems

Nebel, Hué and Wölfl
Let L be a not-empty set of labels.
Vertex labeling: a function $l: V \rightarrow L$ that assigns to each v a vertex label $l(v) \in L$.
Edge labeling: a function $l: E \rightarrow L$ that assigns to each $e \in E$ a label $l(v) \in L$.

Example: In route planning, one can represent street networks as digraphs with an arc labeling (expressing travelling distance between places/nodes).

The label set may be equipped with further structures. In the route planning example, the labeling function is understood as a distance function (metric space).

Hypergraph

Graphs can be used to represent binary relations between nodes.
For relations of higher arity we need:

Definition

A hypergraph is a pair $H:=\langle V, E\rangle$, where

- V is a set (of nodes, vertices),
- E is a set of non-empty subsets of V (called hyperedges),

Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Notice: Hyperedges may contain arbitrarily many nodes.
k-uniform hypergraph: each hyperedge contains exactly k vertices.

Hypergraph

Graphs can be used to represent binary relations between nodes.
For relations of higher arity we need:

Definition

A hypergraph is a pair $H:=\langle V, E\rangle$, where

- V is a set (of nodes, vertices),
- E is a set of non-empty subsets of V (called hyperedges),

Directed Graphs
Labeled Graphs
Hypergraphs i.e., $E \subseteq 2^{V} \backslash\{\emptyset\}$.

Notice: Hyperedges may contain arbitrarily many nodes. k-uniform hypergraph: each hyperedge contains exactly k vertices.

Hypergraphs: An example

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Graphs
Undirected
Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
Computational
Complexity

Figure: A hypergraph

Computational Complexity

Model of computation

- In the lecture we do not use a specific model of computation: any Turing-complete abstract machine (Turing machine, (unit cost) RAM, ...) suffices
- When analyzing algorithms, we use a uniform cost model:

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
constant costs are assumed for every machine operation (regardless of the size of its input)

Landau symbols

Let M be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}, g \in M$.
$\mathcal{O}(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n)\right\}$ $\Omega(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \geq c \cdot g(n)\right\}$ $\Theta(g)=\mathcal{O}(g) \cap \Omega(g)$

Model of computation

- In the lecture we do not use a specific model of computation: any Turing-complete abstract machine (Turing machine, (unit cost) RAM, ...) suffices
- When analyzing algorithms, we use a uniform cost model: constant costs are assumed for every machine operation (regardless of the size of its input)

Landau symbols

Let M be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}, g \in M$.

Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP
$\mathcal{O}(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n)\right\}$
$\Omega(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \geq c \cdot g(n)\right\}$
$\Theta(g)=\mathcal{O}(g) \cap \Omega(g)$

Data structures

- Runtime depends on used data structures

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

- For example: basic operations on a graph depend on how the graph is represented (e.g., as an adjacency matrix or an adjacency list).

Data structures

- Runtime depends on used data structures

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

- For example: basic operations on a graph depend on how the graph is represented (e.g., as an adjacency matrix or an adjacency list).

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP the number of arcs from vertex v_{i} to vertex v_{j}.
Adjacency list: an array of lists, namely, for each vertex v, the list of v 's children (in undirected graphs: neighbors $=$ adjacent vertices)

Adjacency matrix

Graph:
Adjacency matrix:

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Adjacency list

Graph:
Adjacency list:

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets

$1 \rightarrow(2,5,5)$
$2 \rightarrow(3,4,6)$
$3 \rightarrow()$
$4 \rightarrow(1,2)$
$5 \rightarrow(5)$
$6 \rightarrow(4)$

Comparing basic operations

Consider the following operations on a digraph (without parallel arcs):

- Arc: Check whether there is an arc from v to w $((v, w) \in E ?)$;

Constraint
Satisfaction Problems

Nebel, Hué and WölfI

Sets

- $\mathbf{D e g}^{+}$: Determine the outdegree of $v\left(g^{+}(v)=\right.$?);
- Root: Check whether there exists a v with $g^{-}(v)=0$.

Data structure	Memory	Arc	Deg $^{+}$	Root
Adjacency matrix	$\Theta\left(n^{2}\right)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$
Adjacency list	$\Theta(n+m)$	$\mathcal{O}\left(g^{+}(v)\right)$	$\mathcal{O}\left(g^{+}(v)\right)$	$\mathcal{O}(n+m)$

n : number of vertices; m : number of arcs/edges

Computational problems

In the lecture we will study three types of computational problems:

- Decision problems

Expected output: YES/No

- Search problems

Expected output: a solution

Sets

Relations

Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational
Problems

- Optimization problems

Expected output: an optimal solution

Decision problem

Let P be a set of problem instances and F be a unary property defined on P.

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfı
Then the decision problem " x satisfies F ?" is defined as follows:

- Given: A problem instance $x \in P$
- Question: Does x satisfy condition F ?

Sets

Relations

Graphs
Computational
Complexity
O. Ω, etc

Computational Problems
NP

Example

- Given: A digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$
- Question: Does there exist a path from v_{1} to v_{2} in G ?

Decision problem

Let P be a set of problem instances and F be a unary property defined on P.
Then the decision problem " x satisfies F ?" is defined as follows:

- Given: A problem instance $x \in P$
- Question: Does x satisfy condition F ?

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational Problems
NP

Example

- Given: A digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$.
- Question: Does there exist a path from v_{1} to v_{2} in G ?

Search problem

Let P be a set of problem instances, S be the set of solutions, and R be a binary relation $R \subseteq P \times S$.

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI
Then the search problem "Find a solution of x ?" is defined as follows:

- Given: A problem instance $x \in P$
- Asked: A solution $s \in S$ with $(x, s) \in R$

Search problem

Let P be a set of problem instances, S be the set of solutions, and R be a binary relation $R \subseteq P \times S$.
Then the search problem "Find a solution of x ?" is defined as follows:

Relations

- Given: A problem instance $x \in P$
- Asked: A solution $s \in S$ with $(x, s) \in R$

Example

- Given: A digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$.
- Asked: Find a path from v_{1} to v_{2} in G (if there exists one; otherwise "failure")!

Optimization problem

Let P be a set of problem instances, S be the set of solutions, R be a binary relation $R \subseteq P \times S$, and $f: S \rightarrow \mathbb{R}$ be an objective function.

Constraint
Satisfaction
Problems
Nebel, Hué and WölfI
The optimization problem "Find an optimal solution of x ?" is defined as follows:

- Given: A problem instance $x \in P$
- Asked: A solution $s \in S$ with $(x, s) \in R$ that maximizes/minimizes f, i.e., $f(s)$ is maximal/minimal among all s with $(x, s) \in R$.

Example

- Given: A weighted digraph $G=\langle V, E\rangle$, vertices
- Asked: Find a shortest path from v_{1} to v_{2} in G (if there exists one; otherwise "failure")!

Optimization problem

Let P be a set of problem instances, S be the set of solutions, R be a binary relation $R \subseteq P \times S$, and $f: S \rightarrow \mathbb{R}$ be an objective function.

Constraint Satisfaction Problems

Nebel, Hué and WölfI
The optimization problem "Find an optimal solution of x ?" is defined as follows:

- Given: A problem instance $x \in P$
- Asked: A solution $s \in S$ with $(x, s) \in R$ that maximizes/minimizes f, i.e., $f(s)$ is maximal/minimal among all s with $(x, s) \in R$.

Example

- Given: A weighted digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$.
- Asked: Find a shortest path from v_{1} to v_{2} in G (if there exists one; otherwise "failure")!

P: class of decision problems that can be solved by a deterministic Turing machine in polynomial time

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl
NP: class of decision problems that can be solved by a non-deterministic Turing machine in polynomial time

Alternative characterization of NP:
NP: class of decision problems P such that there exists a polynomial verifier for P.
A verifier for a decision problem P is a procedure that, given a problem instance x and a candidate solution s (called certificate), verifies that s is a solution of x.
A verifier is polynomial if it verifies $(x, s) \in R$ in polynomial time (it need not run in polynomial time on input $(x, s) \notin R)$

NP-completeness

Consider decision problems P and P^{\prime} encoded as formal languages L, L^{\prime} over alphabets Σ, Σ^{\prime}.
Polynomial reduction: L^{\prime} is polynomially reducible to L, $L^{\prime} \leq_{p} L$, if there exists a total and polynomial time-computable function $f: \Sigma^{\prime} \rightarrow \Sigma$ such that $x \in L^{\prime} \Longleftrightarrow f(x) \in L$.

Definition

- A decision problem L is NP-hard if for each decision problem L^{\prime} in NP, it holds $L^{\prime} \leq_{p} L$.
- A decision problem L is NP-complete if it is both in NP and NP-hard.

SAT, 3SAT

Theorem (Cook)

The Boolean satisfiability problem, i.e., the problem of deciding whether a propositional logic formula φ is satisfiable, is NP-complete.

3CNF-SAT formula: a proposional logic formula φ that is in conjunctive normal form such that each clause contains at most 3 literals.

Theorem (3CNF-SAT)

The problem of deciding whether a 3CNF-SAT formula is satisfiable is NP-complete.

3-COLORABILITY

The problem 3-Colorability is defined as follows:
Given an undirected, simple graph $G=\langle V, E\rangle$, is there a vertex coloring $c: V \rightarrow\{1,2,3\}$ such that for each pair of adjacent

Constraint Satisfaction Problems

Nebel, Hué and WölfI vertices v, v^{\prime} in $G, c(v) \neq c\left(v^{\prime}\right)$.

Theorem

3-Colorability is NP-complete.
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational Problems
NP

3-COLORABILITY

The problem 3-Colorability is defined as follows:
Given an undirected, simple graph $G=\langle V, E\rangle$, is there a vertex coloring $c: V \rightarrow\{1,2,3\}$ such that for each pair of adjacent

Constraint Satisfaction Problems

Nebel, Hué and Wölfl vertices v, v^{\prime} in $G, c(v) \neq c\left(v^{\prime}\right)$.

Theorem

3-Colorability is NP-complete.

Proof.

Obviously, 3-Colorability is in NP: we only need to guess the coloring c. Then we check whether this coloring assigns different colors to adjacent vertices. This can be done in polynomial time.

We now show that 3-COLORABILITY is NP-hard by a polynomial reduction from 3CNF-SAT. Since 3CNF-SAT is NP-complete, each problem in NP can be reduced to $3 \mathrm{CNF}-\mathrm{SAT}$ and via $3 \mathrm{CNF}-\mathrm{SAT} \leq_{p} 3$-Colorability, each problem in NP can also be reduced to 3 -Colorability.

3-COLORABILITY

We construct a function that assigns to each 3CNF-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ a graph G_{φ} such that
φ is satisfiable $\Longleftrightarrow G_{\varphi}$ has a coloring with colors $\{$ red, blue, green $\}$.
We assume (w.l.o.g.) that each clause C_{j} consists of exactly three literals, i.e., $C_{j}=\left(l_{1 j} \vee l_{j 2} \vee l_{j 3}\right)$. Let x_{1}, \ldots, x_{n} be the set of

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

3-COLORABILITY

For each clause $C_{j}(1 \leq j \leq m)$ we add a subgraph G_{j} (clause gadget) with new vertices $a_{j}, b_{j}, c_{j}, y_{j}, z_{j}$ and a vertex v which is the

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI same in each of the clause gadgets:

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Vertices in G_{j} are connected by an edge to vertices in G_{T} as follows:

- an edge $\{u, v\}$
- edges $\left\{a_{j}, l_{j 1}\right\},\left\{b_{j}, l_{j 2}\right\},\left\{c_{j}, l_{j 3}\right\}(1 \leq j \leq m)$

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint
Satisfaction
Problems
Nebel, Hué
and Wölfl

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational
Problems
NP

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume now that φ is satisfied by a truth function V. Define: $c(u)=$ blue, $c(v)=$ red, $c\left(x_{i}\right)=$ green and $c\left(\overline{x_{i}}\right)=$ red, if $V\left(x_{i}\right)=1$, and $c\left(x_{i}\right)=$ red and $c\left(\overline{x_{i}}\right)=$ green, if $V\left(x_{i}\right)=0$.

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume now that φ is satisfied by a truth function V. Define: $c(u)=$ blue, $c(v)=$ red, $c\left(x_{i}\right)=$ green and $c\left(\overline{x_{i}}\right)=$ red, if $V\left(x_{i}\right)=1$, and $c\left(x_{i}\right)=$ red and $c\left(\overline{x_{i}}\right)=$ green, if $V\left(x_{i}\right)=0$.
For example: if $V\left(x_{1}\right)=1, V\left(x_{2}\right)=1, V\left(x_{4}\right)=0, \ldots$,

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume now that φ is satisfied by a truth function V. Define: $c(u)=$ blue, $c(v)=$ red, $c\left(x_{i}\right)=$ green and $c\left(\overline{x_{i}}\right)=$ red, if $V\left(x_{i}\right)=1$, and $c\left(x_{i}\right)=$ red and $c\left(\overline{x_{i}}\right)=$ green, if $V\left(x_{i}\right)=0$.
For example: if $V\left(x_{1}\right)=1, V\left(x_{2}\right)=1, V\left(x_{4}\right)=0, \ldots$, c can be extended to a coloring of $G_{1} \ldots$

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume now that φ is satisfied by a truth function V. Define: $c(u)=$ blue, $c(v)=$ red, $c\left(x_{i}\right)=$ green and $c\left(\overline{x_{i}}\right)=$ red, if $V\left(x_{i}\right)=1$, and $c\left(x_{i}\right)=$ red and $c\left(\overline{x_{i}}\right)=$ green, if $V\left(x_{i}\right)=0$.
For $V\left(x_{1}\right)=1, V\left(x_{2}\right)=1, V\left(x_{4}\right)=1, \ldots, G_{1}$ can also be colored

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume now that φ is satisfied by a truth function V. Define: $c(u)=$ blue, $c(v)=$ red, $c\left(x_{i}\right)=$ green and $c\left(\overline{x_{i}}\right)=$ red, if $V\left(x_{i}\right)=1$, and $c\left(x_{i}\right)=$ red and $c\left(\overline{x_{i}}\right)=$ green, if $V\left(x_{i}\right)=0$.
\ldots also for $V\left(x_{1}\right)=0, V\left(x_{2}\right)=0, V\left(x_{4}\right)=0$ etc.

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

For the other direction, assume that G_{φ} has a coloring c (w.l.o.g, $c(u)=$ blue and $c(v)=$ red).
Define $V\left(x_{i}\right)=1$ if $c\left(x_{i}\right)=$ green, and $V\left(x_{i}\right)=0$ if $c\left(x_{i}\right)=$ red.

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational
Problems
NP

For the other direction, assume that G_{φ} has a coloring c (w.l.o.g, $c(u)=$ blue and $c(v)=$ red).
Define $V\left(x_{i}\right)=1$ if $c\left(x_{i}\right)=$ green, and $V\left(x_{i}\right)=0$ if $c\left(x_{i}\right)=$ red. This is a truth function $V:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$, since all x_{i}-nodes are red or green(because u is colored blue).

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Sets

Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and Wölfl

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

3-COLORABILITY

For example, if $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge \ldots, G_{\varphi}$ contains the following subgraph G_{1} :

Constraint Satisfaction Problems

Nebel, Hué and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems
NP

Assume V does not satisfy C_{φ}. Then there is clause, say C_{1}, with $V \not \vDash C_{1}$, i.e., all literals in C_{1} are false.
Then b_{1}, c_{1} must be colored blue or green.
If, w.l.o.g., $c\left(b_{1}\right)=$ green and $c\left(c_{1}\right)=$ blue, \ldots
then a_{1} must be colored red, a contradiction.

3-COLORABILITY

Proof (summary).

Thus we have constructed a function f that assigns to each 3CNF-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ a graph G_{φ} such that
φ is satisfiable $\Longleftrightarrow G_{\varphi}$ has a coloring with colors $\{$ red, blue, green $\}$. Since the constructed graph G_{φ} has $2 n+5 m+2$ vertices, f can be computed in polynomial time.

Notice:

Constraint
Satisfaction
Problems
Nebel, Hué
and WölfI

Sets
Relations
Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational
Problems
NP

- Actually, what we have proven is:
$3 \mathrm{CNF}-\mathrm{SAT} \leq_{p} k$-Colorability, for $k \geq 3$.
- The corresponding search problem "Given a graph, find a 3-coloring ..." is in the complexity class Function NP (FNP).

3-Colorability

Proof (summary).

Thus we have constructed a function f that assigns to each 3CNF-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ a graph G_{φ} such that
φ is satisfiable $\Longleftrightarrow G_{\varphi}$ has a coloring with colors $\{$ red, blue, green $\}$.
Since the constructed graph G_{φ} has $2 n+5 m+2$ vertices, f can be computed in polynomial time.

Notice:

- Actually, what we have proven is: 3CNF-SAT $\leq_{p} k$-Colorability, for $k \geq 3$.
- The corresponding search problem "Given a graph, find a 3-coloring ..." is in the complexity class Function NP (FNP).

Summary

- Short reminder on set-theoretical notions and operations
- Even more operations can be defined for relations
- Distinguish relations (as sets) and relations over variables
- Very basic reminder of graph-theoretical notions
- ... and complexity theory

Graphs
Computational
Complexity
\mathcal{O}, Ω, etc
Computational
Problems

- Example: k-colorability is an NP-complete decision problem
for $k \geq 3$; for $k=2$ it is tractable

Summary

- Short reminder on set-theoretical notions and operations
- Even more operations can be defined for relations
- Distinguish relations (as sets) and relations over variables
- Very basic reminder of graph-theoretical notions
- ... and complexity theory

Graphs
Computational
Complexity
\mathcal{O}, Ω, etc.
Computational
Problems

- Example: k-colorability is an NP-complete decision problem
- ... for $k \geq 3$; for $k=2$ it is tractable

Literature

國 Rina Dechter．
Constraint Processing，
（ Sven Oliver Krumke and Hartmut Noltemeier．
Graphentheoretische Konzepte und Algorithmen，
Graphs
Vieweg＋Teubner， 2009
國 Uwe Schöning．
Theoretische Informatik－kurzgefasst，
Spektrum， 2001
围 Wikipedia contributors，
Graph theory，Graph（mathematics），Boolean Algebra，Relational Algebra，（2007，April），
In Wikipedia，The Free Encyclopedia．Wikipedia．

