Constraint Satisfaction Problems

Bernhard Nebel, Julien Hué, and Stefan Wölfı

Albert-Ludwigs-Universität Freiburg
April 23, 25, and 2012; May 2, 2012

Nebel, Hué and Wölfl (Universität Freiburg)

Constraint Satisfaction Problems

April 23, 25, and 2012; May 2, 2012 - Mathematical Background: Sets, Relations, and Graphs

1 Set-theoretical notions

2 Relations

3 Graphs

4 Computational Complexity

Nebel, Hué and Wölfl (Universität Freiburg)

1 Set-theoretical notions

- Set-theoretical principles
- Sets and Boolean algebras

Sets:

Naive understanding:
a set is a "well-defined" collection of objects.

Principles/Set-theoretical axioms (ZF):
Axioms that describe which objects count as sets and which operations can be used to form new sets ..

Nebel, Hué and Wölfl (Universität Freiburg)

Sets Set-theoretical principles

Set theory

Some set-theoretical axioms (ZF):

- Extensionality: Two sets are equal if and only if they contain the same elements.
- Empty set: There is a set, \emptyset, with no elements.
- Pairs: For any pair of sets $x, y,\{x, y\}$ is a set
- Union: For any set x, there exists a set, \bigcup_{x}, whose elements are precisely the elements of the elements of x.
- Separation: For any set x and any property $F(y)$, there is a subset of x, $\{y \in x: F(y)\}$, containing precisely the elements y of x for which $F(y)$ holds.
- Power set: For any set x there exists a set 2^{x} such that the elements of 2^{x} are precisely the subsets of x.
- Axiom of choice: Given a set x of pairwise disjoint nonempty sets, there is a set y that contains exactly one element from each member of x

Sets Set-theoretical principles

Set-theoretical notations

Usually, we argue naïvely by using the following notations ...
Boolean operations on sets:

$$
\begin{aligned}
A \cup B & :=\{x: x \in A \text { or } x \in B\} \\
A \cap B & :=\{x \in A: x \in B\} \\
A \backslash B & :=\{x \in A: x \notin B\}
\end{aligned}
$$

Subset relation: $A \subseteq B, A \subsetneq B$, etc., are defined as usual.
Power set: $2^{A}:=\{B: B \subseteq A\}$
(Ordered) pairs

$$
\begin{aligned}
(x, y) & :=\{\{x\},\{x, y\}\} \\
\left(x_{1}, \ldots, x_{n}\right) & :=\left(\left(x_{1}, \ldots, x_{n-1}\right), x_{n}\right)
\end{aligned}
$$

Product: $A \times B:=\{(a, b): a \in A$ and $b \in B\}$
Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

Sets Sets and Boolean algebras

Set algebras

Definition

A set algebra on a set X is a non-empty subset \mathcal{F} of 2^{X} that is closed under unions, intersections, and complements.
$\langle X, \mathcal{F}\rangle$ is called a field of sets.
Notice: a set algebra on X contains X and \emptyset as elements.
Lemma
(a) The power set of any set forms a set algebra.
(b) Each set algebra defines a Boolean algebra.
(c) A finite Boolean algebra can always be represented as a power set, . .
(d) more generally, each Boolean algebra is isomorphic to a field of sets (Stone's representation theorem).

Nebel, Hué and Wölfl (Universität Freiburg)

Boolean algebras vs set algebras I

Proof of the lemma.
(a) By applying complement, union, or intersection on subsets of a given set X, we again obtain subsets of X.
(b) A set algebra \mathcal{F} on X contains \emptyset and $X . \bar{A}:=X \backslash A$ is a unary operation on $\mathcal{F} ; \cap$ and \cup are binary operations. Hence, $\left\langle\mathcal{F}, \cap, \cup,^{-}, \emptyset, X\right\rangle$ is a structrue that obviously satisifes all properties of a Boolean algebra.
(c) One has to show: given a finite Boolean algebra $B=\langle A, \sqcap, \sqcup,-, 0,1\rangle$ there exists a set X such that ...
(next slide ...)

Sets Sets and Boolean algebras

Boolean algebras vs set algebras II

Proof of the lemma (cont'd)
$\ldots B$ and 2^{X} are isomorphic (as Boolean algebras).

1. Define a partial order on B :
$a \leq b: \Longleftrightarrow b \sqcap a=a(\Longleftrightarrow b \sqcup a=b \Longleftrightarrow a \sqcap-b=0)$
$a<b: \Longleftrightarrow a \leq b \wedge a \neq b$.
The set of atoms (i.e., non-zero minimal element of B) is def. by:
At $_{B}:=\{a \in A: 0 \leq a \wedge$ there is no $b \in A$ s.t. $0<b<a\}$.
2. Define a map $f: A \rightarrow 2^{\text {At }_{B}}, x \mapsto\left\{a \in \operatorname{At}_{B}: a \leq x\right\}$.

Obviously $f(a)=\{a\}$ for each $a \in \mathrm{At}_{B}$.
3. f is an homomorphism of Boolean algebras, i.e., it preserves Boolean operations: $f(0)=\emptyset, f(1)=X, f(-x)=\overline{f(x)}, f(x \sqcap y)=f(x) \cap f(y)$, and $f(x \sqcup y)=f(x) \cup f(y)$.
4. f is a bijection, i.e., it is injective ("one-to-one") and surjective ("onto").

Relations Relations

Relations

Definition

A relation over sets X_{1}, \ldots, X_{n} is a subset

$$
R \subseteq X_{1} \times \cdots \times X_{n}=: \prod_{1 \leq i \leq n} X_{i}
$$

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

$$
R \subseteq X^{n}:=X \times \cdots \times X \quad(n \text { times }) .
$$

Since relations are sets, set-theoretical operations (union, intersection, complement) can be applied to relations as well.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

Binary relations

For binary relations on a set X we have some special operations:
Definition
Let R, S be binary (2-ary) relations on X.
The converse of relation R is defined by:

$$
R^{-1}:=\left\{(x, y) \in X^{2}:(y, x) \in R\right\} .
$$

The composition of relations R and S is defined by:

$$
R \circ S:=\left\{(x, z) \in X^{2}: \exists y \in X \text { s.t. }(x, y) \in R \text { and }(y, z) \in S\right\}
$$

The identity relation is:

$$
\Delta_{X}:=\left\{(x, y) \in X^{2}: x=y\right\}
$$

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

April 23, 25, and 2012; May 2, 2012

Relations Relations over Variables

Constraints, relations, and variables

Constraints can be expressed by relations that restrict value assignments to variables.
Consider variables x_{1}, x_{2}, x_{3} and relations B, C defined by:

$$
\begin{aligned}
& B=\left\{(x, y, z) \in[0 . .3]^{3}: x<y<z\right\} \\
& C=\left\{(x, y, z) \in[0 . .3]^{3}: x>y>z\right\}
\end{aligned}
$$

- " $\left(x_{1}, x_{2}, x_{3}\right)$ satisfies B " and " $\left(x_{3}, x_{2}, x_{1}\right)$ satisfies B " express different constraints, while..
- " $\left(x_{3}, x_{2}, x_{1}\right)$ satisfies B " and " $\left(x_{1}, x_{2}, x_{3}\right)$ satisfies C " essentially express the same constraint.

x_{1}	x_{2}	x_{3}
0	1	2
0	1	3
0	2	3
1	2	3

$$
\neq \begin{array}{c|c|c}
x_{3} & x_{2} & x_{1} \\
\hline 0 & 1 & 2 \\
0 & 1 & 3 \\
0 & 2 & 3 \\
1 & 2 & 3
\end{array} \equiv \begin{array}{c|c|c}
x_{1} & x_{2} & x_{3} \\
\hline 2 & 1 & 0 \\
3 & 1 & 0 \\
3 & 2 & 0 \\
3 & 2 & 1
\end{array}
$$

Constraint Satisfaction Problems

Relations Relations over Variables

Relations over variables

Let V be a set of variables. For $v \in V$, let $\operatorname{dom}(v)$ be a non-empty set (of values), called the domain of v.
Definition
A relation over (pairwise distinct) variables $v_{1}, \ldots, v_{n} \in V$ is a pair

$$
R_{v_{1}, \ldots, v_{n}}:=\left(\left(v_{1}, \ldots, v_{n}\right), R\right)
$$

where R is a relation over $\operatorname{dom}\left(v_{1}\right), \ldots, \operatorname{dom}\left(v_{n}\right)$.
The sequence $\left(v_{1}, \ldots, v_{n}\right)$ is referred to as the scheme (or: range), the set $\left\{v_{1}, \ldots, v_{n}\right\}$ as the scope, and R as the graph of $R_{v_{1}, \ldots, v_{n}}$.

We will not always distinguish between a relation over variables and its graph (and between scope and scheme), e. g., we write

$$
R_{v_{1}, \ldots, v_{n}} \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{n}\right)
$$

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

Selections, ...

Let $R_{\bar{v}}=(\bar{v}, R)$ be a relation over variables $\bar{v}=\left(v_{1}, \ldots, v_{n}\right)$.
Definition
For any fixed values $a_{1} \in \operatorname{dom}\left(v_{i_{1}}\right), \ldots, a_{k} \in \operatorname{dom}\left(v_{i_{k}}\right)$, define

$$
\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}}(\bar{v}, R):=\left(\bar{v}, R^{\prime}\right)
$$

with

$$
R^{\prime}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in R: x_{i_{j}}=a_{j}, \text { for each } 1 \leq j \leq k\right\} .
$$

The (unary) operation $\sigma_{v_{i_{1}}=a_{1}, \ldots, v_{i_{k}}=a_{k}}$ is called selection or restriction.

$$
\text { Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, } 2012
$$

$$
\text { Relations } \quad \text { Relations over Variables }
$$

... Joins

Definition

Consider pairwise distinct variables v_{1}, \ldots, v_{n}
Let (\bar{v}, R) and $\left(\overline{v^{\prime}}, S\right)$ be relations over variables $\bar{v}=\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ and $\overline{v^{\prime}}=\left(v_{j_{1}}, \ldots, v_{j_{1}}\right)$, resp., such that
$\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \cup\left\{v_{j_{1}}, \ldots, v_{j_{l}}\right\}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then

$$
(\bar{v}, R) \bowtie\left(\overline{v^{\prime}}, S\right):=\left(\left(v_{1}, \ldots, v_{n}\right), T\right)
$$

with

$$
T=\left\{\bar{x} \in \prod_{1 \leq i \leq n} \operatorname{dom}\left(v_{i}\right):\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in R \text { and } \quad\left(x_{j_{1}}, \ldots, x_{j_{l}}\right) \in S\right\}
$$

is a relation over $\left(v_{1}, \ldots, v_{n}\right)$, the join of (\bar{v}, R) and $\left(\overline{v^{\prime}}, S\right)$.
For binary relations $R=R_{x, y}$ and $S=S_{y, z}$ on the same set,

$$
R \circ S=\pi_{x, z}\left(R_{x, y} \bowtie S_{y, z}\right)
$$

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012

Relations Relations over Variables

Examples

Consider relations $R:=R_{x_{1}, x_{2}, x_{3}}$ and $S:=S_{x_{2}, x_{3}, \chi_{4}}$ defined by:

$$
\begin{array}{c|c|cc|c|c}
x_{1} & x_{2} & x_{3} & x_{2} & x_{3} & x_{4} \\
\hline b & b & c & a & a & 1 \\
c & b & c & b & c & 2 \\
c & n & n & b & c & 3
\end{array}
$$

Then $\sigma_{\chi_{3}=c}(R), \pi_{\chi_{2}, x_{3}}(R), \pi_{\chi_{2}, x_{1}}(R)$, and $R \bowtie S$ are:

$$
\begin{array}{c|c|cc|cc|cc|c|c|c}
x_{1} & x_{2} & x_{3} & x_{2} & x_{3} & & x_{2} & x_{1} & x_{1} & x_{2} & x_{3} \\
\hline b & b & c & x_{4} \\
\hline b & b & c & b & b & b & c & 2 \\
c & b & c & b & c & b & c & b & b & c & 3 \\
& & n & n & n & c & c & b & c & 2 \\
& & & & & & b & c & 3
\end{array}
$$

Nebel, Hué and Wölfl (Universität Freiburg)

Undirected graph

Definition

An (undirected, simple) graph is an ordered pair

$$
G:=\langle V, E\rangle
$$

where:

- V is a non-empty set (of vertices, nodes);
- E is a set of two-element subsets $X \subseteq V$ (elements of E are called edges).

Usually, we assume that the graph (i.e., $|V|$) is finite.
In undirected, simple graphs edges are often written as $[u, v]$
Sometimes, one allows E to also contain singleton subsets of V (loops), written as $[v, v]$. But simple graphs are always loopless.

3 Graphs

■ Undirected Graphs

- Directed Graphs

■ Labeled Graphs

- Hypergraphs

Graphs Undirected Graphs
A simple undirected graph

[^0]
Undirected multi-graph

Often we allow for multiple edges between the same set of end vertices.
Definition
An (undirected, multi-) graph is an ordered triple

$$
G:=\langle V, E, \gamma\rangle
$$

where:

- V is non-empty set (of vertices, nodes);
- $\gamma: E \rightarrow\left\{X \in 2^{V}: 1 \leq|X| \leq 2\right\}$.

The elements of E are called edges.
We always assume: $V \cap E=\emptyset$.
The order of a graph is the number of vertices $|V|$. Often, $|E|$ is referred to as the size of G, but often we specify both $n:=|V|$ and $m:=|E|$.

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012

Graphs Undirected Graphs

Graphs: Some definitions

Definition
Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.
(a) If $\gamma(e)=\{u, v\}$ for some $e \in E$, then u and v are called adjacent (or: connected by e).
(b) A path (or: walk) in G is a sequence

$$
\left(v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}\right)
$$

such that $e_{1}, \ldots, e_{k} \in E$ and $\gamma\left(e_{i}\right)=\left\{v_{i-1}, v_{i}\right\}$ (for each $1 \leq i \leq k$). k is referred to as length, v_{0} as start vertex, and v_{k} as end vertex of the path.
(c) A cycle is a path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ with $v_{0}=v_{k}$ and $k \geq 1$.
(d) A path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ is simple if $e_{i} \neq e_{j}$ for all $i \neq j$.
(e) A path $\left(v_{0}, \ldots, e_{k}, v_{k}\right)$ is elementary if $v_{1} \neq v_{j}$ for $0 \leq i \neq j \leq k$ (but $v_{0}=v_{k}$ is allowed).

Graphs Undirected Graphs
Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.
Definition
(a) G is connected if for each pair of vertices u and v, there exists a path from u to v.
(b) G is complete if any pair of vertices is connected by an edge.
(c) G is a forest if G is cycle-free.
(d) G is a tree if G is cycle-free and connected

Examples

Figure: Connected, but not complete

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

April 23, 25, and 2012; May 2, 2012 \qquad

Graph-theoretical notions

Let $G=\langle V, E, \gamma\rangle$ be an undirected graph.
Definition
Let V^{\prime} be a non-empty subset of V. Then $G\left[V^{\prime}\right]=\left\langle V^{\prime}, E^{\prime}, \gamma^{\prime}\right\rangle$ with:

$$
E^{\prime}:=\left\{e \in E: \gamma(e) \subseteq V^{\prime}\right\} \text { and } \gamma^{\prime}:=\left.\gamma\right|_{E^{\prime}}
$$

is called the subgraph induced by V^{\prime}.
Definition
Let E^{\prime} be a subset of E. Then $G\left[E^{\prime}\right]=\left\langle V^{\prime}, E^{\prime},\left.\gamma\right|_{E^{\prime}}\right\rangle$ is called the partial graph induced by E^{\prime}.

Definition
A clique in a graph G is a complete subgraph of G.

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012

Graphs Directed Graphs

Directed Graph

Definition
A directed (multi-) graph (or: digraph) is an ordered tuple

$$
G:=\langle V, A, \alpha, \omega\rangle
$$

where:

- V is a non-empty set (of vertices or nodes),
- A is a set (elements of A are called arcs, edges, or arrows),
- $\alpha, \omega: A \rightarrow V$ are functions.
$\alpha(a)$ is called the start vertex of $a, \omega(a)$ the end vertex of a.
If G has no parallel arcs $\left(a, a^{\prime} \in A\right.$ with $\alpha(a)=\alpha\left(a^{\prime}\right)$ and $\left.\omega(a)=\omega\left(a^{\prime}\right)\right)$, we can write A as a set of tuples:

$$
\left\{(\alpha(a), \omega(a)) \in V^{2}: a \in A\right\}
$$

In that case we use the notation $\langle V, A\rangle$ instead of $\langle V, A, \alpha, \omega\rangle$.
Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012

Digraphs: Some notions

Most notions introduced for undirected graphs can easily be adapted for directed graphs. For example:
Definition
A path in G is a sequence $\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ such that $a_{1}, \ldots, a_{k} \in A$ and for each $1 \leq i \leq k, \alpha\left(a_{i}\right)=v_{i-1}$ and $\omega\left(a_{i}\right)=v_{i}$.
$g^{+}(v)$: the outdegree of v, the number of arcs that start from v
$g^{-}(v)$: the indegree of v, the number of arcs that end in v
parents of v : nodes with an arc to v
childs of v : nodes with an arc from v

A directed multi-graph

Nebel. Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012

Graphs Labeled Graphs

Labeled graphs

Often graphs $G=\langle V, E / A, \ldots\rangle$ are equipped with labeling functions.
Let L be a not-empty set of labels.
Vertex labeling: a function $I: V \rightarrow L$ that assigns to each v a vertex label $I(v) \in L$.
Edge labeling: a function $I: E \rightarrow L$ that assigns to each $e \in E$ a label $I(v) \in L$.

Example: In route planning, one can represent street networks as digraphs with an arc labeling (expressing travelling distance between places/nodes)
The label set may be equipped with further structures. In the route planning example, the labeling function is understood as a distance function (metric space).

Graphs Hypergraphs

Hypergraph

Graphs can be used to represent binary relations between nodes.
For relations of higher arity we need:
Definition
A hypergraph is a pair $H:=\langle V, E\rangle$, where

- V is a set (of nodes, vertices),
- E is a set of non-empty subsets of V (called hyperedges), i.e., $E \subseteq 2^{V} \backslash\{\emptyset\}$.

Notice: Hyperedges may contain arbitrarily many nodes.
k-uniform hypergraph: each hyperedge contains exactly k vertices.

Nebel, Hué and Wölfl (Universität Freiburg)

4 Computational Complexity

■ \mathcal{O}, Ω, etc.

- Computational Problems

■ NP

Graphs Hypergraphs
Hypergraphs: An example

Figure: A hypergraph
Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012

Computational Complexity \mathcal{O}, Ω, etc.
Model of computation

- In the lecture we do not use a specific model of computation: any Turing-complete abstract machine (Turing machine, (unit cost) RAM, ...) suffices
- When analyzing algorithms, we use a uniform cost model: constant costs are assumed for every machine operation (regardless of the size of its input)

Landau symbols
Let M be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}, g \in M$.

$$
\begin{aligned}
& \mathcal{O}(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \leq c \cdot g(n)\right\} \\
& \Omega(g)=\left\{f \in M: \exists c \in \mathbb{R} \exists n_{0} \in \mathbb{N} \forall n>n_{0}: f(n) \geq c \cdot g(n)\right\} \\
& \Theta(g)=\mathcal{O}(g) \cap \Omega(g)
\end{aligned}
$$

Data structures

- Runtime depends on used data structures
- For example: basic operations on a graph depend on how the graph is represented (e.g., as an adjacency matrix or an adjacency list).

Let $G=\langle V, A, \alpha, \omega\rangle$ be a digraph.
Adjacency matrix: $n \times n$ matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that $a_{i j}$ is the number of arcs from vertex v_{i} to vertex v_{j}.
Adjacency list: an array of lists, namely, for each vertex v, the list of v 's children (in undirected graphs: neighbors $=$ adjacent vertices)

Nebel, Hué and Wölfl (Universität Freiburg)

Adjacency matrix

Graph:

Adjacency matrix:

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Computational Complexity \mathcal{O}, Ω, etc.
Adjacency list

Graph:
Adjacency list:

$$
\begin{aligned}
& 1 \rightarrow(2,5,5) \\
& 2 \rightarrow(3,4,6) \\
& 3 \rightarrow() \\
& 4 \rightarrow(1,2) \\
& 5 \rightarrow(5) \\
& 6 \rightarrow(4)
\end{aligned}
$$

Computational Complexity \mathcal{O}, Ω, etc.

Comparing basic operations

Consider the following operations on a digraph (without parallel arcs):

- Arc: Check whether there is an arc from v to $w((v, w) \in E$?);
- Deg ${ }^{+}$: Determine the outdegree of $v\left(g^{+}(v)=\right.$?);
- Root: Check whether there exists a v with $g^{-}(v)=0$.

Data structure	Memory	Arc	Deg $^{+}$	Root
Adjacency matrix	$\Theta\left(n^{2}\right)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$
Adjacency list	$\Theta(n+m)$	$\mathcal{O}\left(g^{+}(v)\right)$	$\mathcal{O}\left(g^{+}(v)\right)$	$\mathcal{O}(n+m)$

n : number of vertices; m : number of arcs/edges

Computational problems

In the lecture we will study three types of computational problems:

- Decision problems

Expected output: YES/No

- Search problems

Expected output: a solution

- Optimization problems

Expected output: an optimal solution

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

Decision problem

Let P be a set of problem instances and F be a unary property defined on P.

Then the decision problem " x satisfies F ?" is defined as follows:

- Given: A problem instance $x \in P$
- Question: Does x satisfy condition F ?

Example

- Given: A digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$.
- Question: Does there exist a path from v_{1} to v_{2} in G ?

Nebel Hué and Wülfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012

Computational Complexity Computational Problems

Optimization problem

Let P be a set of problem instances, S be the set of solutions, R be a binary relation $R \subseteq P \times S$, and $f: S \rightarrow \mathbb{R}$ be an objective function. The optimization problem "Find an optimal solution of x ?" is defined as follows:

- Given: A problem instance $x \in P$
- Asked: A solution $s \in S$ with $(x, s) \in R$ that maximizes/minimizes f, i.e., $f(s)$ is maximal/minimal among all s with $(x, s) \in R$.

Example

- Given: A weighted digraph $G=\langle V, E\rangle$, vertices $v_{1}, v_{2} \in V$.
- Asked: Find a shortest path from v_{1} to v_{2} in G (if there exists one; otherwise "failure")!

P, NP

P: class of decision problems that can be solved by a deterministic Turing machine in polynomial time
NP: class of decision problems that can be solved by a non-deterministic Turing machine in polynomial time

Alternative characterization of NP:
NP: class of decision problems P such that there exists a polynomial verifier for P.
A verifier for a decision problem P is a procedure that, given a problem instance x and a candidate solution s (called certificate), verifies that s is a solution of x.
A verifier is polynomial if it verifies $(x, s) \in R$ in polynomial time (it need not run in polynomial time on input $(x, s) \notin R)$

Nebel, Hué and Wölfl (Universität Freiburg)
Constraint Satisfaction Problems

SAT, 3SAT

Theorem (Cook)

The Boolean satisfiability problem, i.e., the problem of deciding whether a propositional logic formula φ is satisfiable, is NP-complete.

3CNF-SAT formula: a proposional logic formula φ that is in conjunctive normal form such that each clause contains at most 3 literals.
Theorem (3CNF-SAT)
The problem of deciding whether a 3CNF-SAT formula is satisfiable is NP-complete.

NP-completeness

Consider decision problems P and P^{\prime} encoded as formal languages L, L^{\prime} over alphabets Σ, Σ^{\prime}.
Polynomial reduction: L^{\prime} is polynomially reducible to $L, L^{\prime} \leq_{p} L$, if there exists a total and polynomial time-computable function $f: \Sigma^{\prime} \rightarrow \Sigma$ such that $x \in L^{\prime} \Longleftrightarrow f(x) \in L$.

Definition

- A decision problem L is NP-hard if for each decision problem L^{\prime} in $N P$, it holds $L^{\prime} \leq_{p} L$.
- A decision problem L is NP-complete if it is both in NP and NP-hard.

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012 /

Computational Complexity NP

3-COLORABILITY

The problem 3-Colorability is defined as follows:
Given an undirected, simple graph $G=\langle V, E\rangle$, is there a vertex coloring $c: V \rightarrow\{1,2,3\}$ such that for each pair of adjacent vertices v, v^{\prime} in G, $c(v) \neq c\left(v^{\prime}\right)$.
Theorem
3-Colorability is NP-complete.
Proof.
Obviously, 3-Colorability is in NP: we only need to guess the coloring c.
Then we check whether this coloring assigns different colors to adjacent vertices. This can be done in polynomial time.
We now show that 3 -Colorability is NP-hard by a polynomial reduction from 3CNF-SAT. Since 3CNF-SAT is NP-complete, each problem in NP can be reduced to 3CNF-SAT and via 3 CNF-SAT $\leq_{p} 3$-Colorability, each problem in NP can also be reduced to 3-Colorability.

[^1]
Computational Complexity NP

3-Colorability

We construct a function that assigns to each 3CNF-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ a graph G_{φ} such that

$$
\varphi \text { is satisfiable } \Longleftrightarrow G_{\varphi} \text { has a coloring with colors }\{\text { red, blue, green }\} .
$$

We assume (w.l.o.g.) that each clause C_{j} consists of exactly three literals, i.e., $C_{j}=\left(I_{1 j} \vee I_{j 2} \vee I_{j 3}\right)$. Let x_{1}, \ldots, x_{n} be the set of proposional variables that occur in φ. G_{φ} will contain the following subgraph G_{T} (with $2 n+1$ vertices):

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems

3-Colorability

For each clause $C_{j}(1 \leq j \leq m)$ we add a subgraph G_{j} (clause gadget) with new vertices $a_{j}, b_{j}, c_{j}, y_{j}, z_{j}$ and a vertex v which is the same in each of the clause gadgets:

Vertices in G_{j} are connected by an edge to vertices in G_{T} as follows:

- an edge $\{u, v\}$
$-\operatorname{edges}\left\{a_{j}, l_{j 1}\right\},\left\{b_{j}, l_{j 2}\right\},\left\{c_{j}, l_{j 3}\right\}(1 \leq j \leq m)$

Nebel Hué and Wüffl (Universität Freiburg) Constraint Satisfaction Problems April 23, 25, and 2012; May 2, 2012

Computational Complexity NP

3-Colorability

Proof (summary).
Thus we have constructed a function f that assigns to each 3CNF-SAT formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$ a graph G_{φ} such that

$$
\left.\varphi \text { is satisfiable } \Longleftrightarrow G_{\varphi} \text { has a coloring with colors \{red, blue, green }\right\} \text {. }
$$

Since the constructed graph G_{φ} has $2 n+5 m+2$ vertices, f can be computed in polynomial time.
Notice:

- Actually, what we have proven is: 3CNF-SAT $\leq_{p} k$-Colorability, for $k>3$.
- The corresponding search problem "Given a graph, find a 3-coloring ..." is in the complexity class Function NP (FNP).

Computational Complexity NP

Summary

- Short reminder on set-theoretical notions and operations
- Even more operations can be defined for relations
- Distinguish relations (as sets) and relations over variables
- Very basic reminder of graph-theoretical notions
- ... and complexity theory
- Example: k-colorability is an NP-complete decision problem
- ... for $k \geq 3$; for $k=2$ it is tractable

Computational Complexity NP

Literature

Rina Dechter.
Constraint Processing,
Chapter 1 and 2, Morgan Kaufmann, 2003
圊 Sven Oliver Krumke and Hartmut Noltemeier. Graphentheoretische Konzepte und Algorithmen, Vieweg+Teubner, 2009

E Uwe Schöning.
Theoretische Informatik - kurzgefasst,
Spektrum, 2001
国 Wikipedia contributors,
Graph theory, Graph (mathematics), Boolean Algebra, Relational Algebra, (2007, April),
In Wikipedia, The Free Encyclopedia. Wikipedia.

[^0]: Nebel, Hué and Wölfl (Universität Freiburg)
 Constraint Satisfaction Problems

[^1]: Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
 April 23, 25, and 2012; May 2, 2012

