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Constraints, sets, relations, graphs

I Formal definition of CSP uses sets and constraints

I Constraints are specific relations that restrict possible solutions

I CSP solving techniques use operations that manipulate sets and
relations

I CSP instances can also be represented by various kinds of graphs

I Graph-theoretical notions can be used to describe, e.g., structural
properties of constraint networks

I Complexity for solving CSP instances can depend on both the
relations used in the constraints and properties of the constraint
graphs

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012 3 /

62



Sets

1 Set-theoretical notions

Set-theoretical principles
Sets and Boolean algebras

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012 4 /

62



Sets Set-theoretical principles

Sets

Sets:
Naive understanding:

a set is a “well-defined” collection of objects.

Principles/Set-theoretical axioms (ZF):

Axioms that describe which objects count as sets and which operations
can be used to form new sets . . .
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Sets Set-theoretical principles

Set theory

Some set-theoretical axioms (ZF):

I Extensionality: Two sets are equal if and only if they contain the same elements.

I Empty set: There is a set, ∅, with no elements.

I Pairs: For any pair of sets x , y , {x , y} is a set.

I Union: For any set x , there exists a set,
⋃

x , whose elements are precisely the
elements of the elements of x .

I Separation: For any set x and any property F (y), there is a subset of x ,
{y ∈ x : F (y)}, containing precisely the elements y of x for which F (y) holds.

I Power set: For any set x there exists a set 2x such that the elements of 2x are
precisely the subsets of x .

I Axiom of choice: Given a set x of pairwise disjoint nonempty sets, there is a set y
that contains exactly one element from each member of x .
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Sets Set-theoretical principles

Set-theoretical notations

Usually, we argue näıvely by using the following notations . . .

Boolean operations on sets:

A ∪ B := {x : x ∈ A or x ∈ B}
A ∩ B := {x ∈ A : x ∈ B}
A \ B := {x ∈ A : x 6∈ B}

Subset relation: A ⊆ B, A ( B, etc., are defined as usual.

Power set: 2A := {B : B ⊆ A}
(Ordered) pairs:

(x , y) := {{x}, {x , y}}
(x1, . . . , xn) := ((x1, . . . , xn−1), xn)

Product: A× B := {(a, b) : a ∈ A and b ∈ B}
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Sets Sets and Boolean algebras

Boolean algebra

Definition
A Boolean algebra (with complements) is a set A with

I two binary operations u, t,

I a unary operation −, and

I two distinct elements 0 and 1

such that for all elements a, b and c of A:

a t (b t c) = (a t b) t c a u (b u c) = (a u b) u c Ass

a t b = b t a a u b = b u a Com

a t (a u b) = a a u (a t b) = a Abs

a t (b u c) = (a t b) u (a t c) a u (b t c) = (a u b) t (a u c) Dis

a t −a = 1 a u −a = 0 Compl
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Sets Sets and Boolean algebras

Set algebras

Definition
A set algebra on a set X is a non-empty subset F of 2X that is closed
under unions, intersections, and complements.
〈X ,F〉 is called a field of sets.

Notice: a set algebra on X contains X and ∅ as elements.

Lemma

(a) The power set of any set forms a set algebra.

(b) Each set algebra defines a Boolean algebra.

(c) A finite Boolean algebra can always be represented as a power set, . . .

(d) more generally, each Boolean algebra is isomorphic to a field of sets
(Stone’s representation theorem).
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Sets Sets and Boolean algebras

Boolean algebras vs set algebras I

Proof of the lemma.

(a) By applying complement, union, or intersection on subsets of a given set X ,
we again obtain subsets of X .

(b) A set algebra F on X contains ∅ and X . A := X \ A is a unary operation on
F ; ∩ and ∪ are binary operations. Hence, 〈F ,∩,∪, , ∅,X 〉 is a structrue
that obviously satisifes all properties of a Boolean algebra.

(c) One has to show: given a finite Boolean algebra B = 〈A,u,t,−, 0, 1〉 there
exists a set X such that . . .

(next slide . . . )
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Sets Sets and Boolean algebras

Boolean algebras vs set algebras II

Proof of the lemma (cont’d):
. . . B and 2X are isomorphic (as Boolean algebras).

1. Define a partial order on B:
a ≤ b :⇐⇒ b u a = a ( ⇐⇒ b t a = b ⇐⇒ a u −b = 0)
a < b :⇐⇒ a ≤ b ∧ a 6= b.
The set of atoms (i.e., non-zero minimal element of B) is def. by:
AtB := {a ∈ A : 0 ≤ a ∧ there is no b ∈ A s.t. 0 < b < a}.

2. Define a map f : A→ 2AtB , x 7→ {a ∈ AtB : a ≤ x}.
Obviously f (a) = {a} for each a ∈ AtB .

3. f is an homomorphism of Boolean algebras, i.e., it preserves Boolean
operations: f (0) = ∅, f (1) = X , f (−x) = f (x), f (x u y) = f (x) ∩ f (y), and
f (x t y) = f (x) ∪ f (y).

4. f is a bijection, i.e., it is injective (“one-to-one”) and surjective (“onto”).
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Relations

2 Relations

Relations
Binary Relations
Relations over Variables
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Relations Relations

Relations

Definition
A relation over sets X1, . . . ,Xn is a subset

R ⊆ X1 × · · · × Xn =:
∏

1≤i≤n
Xi .

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

R ⊆ X n := X × · · · × X (n times).

Since relations are sets, set-theoretical operations (union, intersection,
complement) can be applied to relations as well.
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Relations Binary Relations

Binary relations

For binary relations on a set X we have some special operations:

Definition
Let R,S be binary (2-ary) relations on X .
The converse of relation R is defined by:

R−1 :=
{

(x , y) ∈ X 2 : (y , x) ∈ R
}
.

The composition of relations R and S is defined by:

R ◦ S :=
{

(x , z) ∈ X 2 : ∃y ∈ X s.t. (x , y) ∈ R and (y , z) ∈ S
}
.

The identity relation is:

∆X :=
{

(x , y) ∈ X 2 : x = y
}
.
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Relations Binary Relations

Operating on binary relations

Lemma
Let X be a non-empty set. Let R(X ) be the set of all binary relations on
X . Then:

(a) R(X ) is a set algebra on X × X .

(b) For all relations R, S ,T ∈ R(X ):

R ◦ (S ◦ T ) = (R ◦ S) ◦ T

R ◦ (S ∪ T ) = (R ◦ S) ∪ (R ◦ T )

∆X ◦ R = R ◦∆X = R

(R−1)
−1

= R and (−R)−1 = −(R−1)

(R ∪ S)−1 = R−1 ∪ S−1

(R ◦ S)−1 = S−1 ◦ R−1

(R ◦ S) ∩ T−1 = ∅ if and only if (S ◦ T ) ∩ R−1 = ∅
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Relations Relations over Variables

Constraints, relations, and variables
Constraints can be expressed by relations that restrict value assignments to
variables.

Consider variables x1, x2, x3 and relations B,C defined by:

B =
{

(x , y , z) ∈ [0..3]3 : x < y < z
}

C =
{

(x , y , z) ∈ [0..3]3 : x > y > z
}
.

I “(x1, x2, x3) satisfies B” and “(x3, x2, x1) satisfies B” express different
constraints, while . . .

I “(x3, x2, x1) satisfies B” and “(x1, x2, x3) satisfies C ” essentially express the
same constraint.

x1 x2 x3

0 1 2
0 1 3
0 2 3
1 2 3

6≡

x3 x2 x1

0 1 2
0 1 3
0 2 3
1 2 3

≡

x1 x2 x3

2 1 0
3 1 0
3 2 0
3 2 1
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Relations Relations over Variables

Relations over variables

Let V be a set of variables. For v ∈ V , let dom(v) be a non-empty set (of
values), called the domain of v .

Definition
A relation over (pairwise distinct) variables v1, . . . , vn ∈ V is a pair

Rv1,...,vn := ((v1, . . . , vn),R)

where R is a relation over dom(v1), . . . ,dom(vn).

The sequence (v1, . . . , vn) is referred to as the scheme (or: range), the set
{v1, . . . , vn} as the scope, and R as the graph of Rv1,...,vn .

We will not always distinguish between a relation over variables and its
graph (and between scope and scheme), e. g., we write

Rv1,...,vn ⊆ dom(v1)× · · · × dom(vn).
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Relations Relations over Variables

Selections, . . .

Let Rv = (v ,R) be a relation over variables v = (v1, . . . , vn).

Definition
For any fixed values a1 ∈ dom(vi1), . . . , ak ∈ dom(vik ), define

σvi1 =a1,...,vik =ak (v ,R) := (v ,R ′)

with
R ′ :=

{
(x1, . . . , xn) ∈ R : xij = aj , for each 1 ≤ j ≤ k

}
.

The (unary) operation σvi1 =a1,...,vik =ak is called selection or restriction.
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Relations Relations over Variables

. . . Projections, . . .

Let (i1, . . . , ik) be a k-tuple of pairwise distinct elements of {1, . . . , n}
(k ≤ n).

Definition
Given a relation (v ,R) over v ,

πvi1 ,...,vik (v ,R) := ((vi1 , . . . , vik ),R ′)

with

R ′ :=
{

y ∈
∏

1≤j≤k
dom(vij ) : y = (xi1 , . . . , xik ),

for some (x1, . . . , xn) ∈ R
}

is a relation over (vi1 , . . . , vik ), called the projection of (v ,R) on
(vi1 , . . . , vik ).

Note: Each permutation of the scheme v defines a projection.
For binary relations R = Rx ,y , R−1 = πy ,x(Rx ,y ).
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Relations Relations over Variables

. . . Joins

Definition
Consider pairwise distinct variables v1, . . . , vn.
Let (v ,R) and (v ′, S) be relations over variables v = (vi1 , . . . , vik ) and
v ′ = (vj1 , . . . , vjl ), resp., such that
{vi1 , . . . , vik} ∪ {vj1 , . . . , vjl} = {v1, . . . , vn}. Then

(v ,R) ./ (v ′, S) := ((v1, . . . , vn),T )

with

T =
{

x ∈
∏

1≤i≤n
dom(vi ) : (xi1 , . . . , xik ) ∈ R and

(xj1 , . . . , xjl ) ∈ S
}

is a relation over (v1, . . . , vn), the join of (v ,R) and (v ′, S).

For binary relations R = Rx ,y and S = Sy ,z on the same set,

R ◦ S = πx ,z(Rx ,y ./ Sy ,z).
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Relations Relations over Variables

Examples

Consider relations R := Rx1,x2,x3 and S := Sx2,x3,x4 defined by:

x1 x2 x3

b b c
c b c
c n n

x2 x3 x4

a a 1
b c 2
b c 3

Then σx3=c(R), πx2,x3 (R), πx2,x1 (R), and R ./ S are:

x1 x2 x3

b b c
c b c

x2 x3

b c
b c
n n

x2 x1

b b
b c
n c

x1 x2 x3 x4

b b c 2
b b c 3
c b c 2
c b c 3
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Graphs

3 Graphs

Undirected Graphs
Directed Graphs
Labeled Graphs
Hypergraphs
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Graphs Undirected Graphs

Undirected graph

Definition
An (undirected, simple) graph is an ordered pair

G := 〈V ,E 〉
where:

I V is a non-empty set (of vertices, nodes);

I E is a set of two-element subsets X ⊆ V (elements of E are called
edges).

Usually, we assume that the graph (i.e., |V |) is finite.

In undirected, simple graphs edges are often written as [u, v ].

Sometimes, one allows E to also contain singleton subsets of V (loops),
written as [v , v ]. But simple graphs are always loopless.
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Graphs Undirected Graphs

A simple undirected graph

A

B

C

D

E F
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Graphs Undirected Graphs

Undirected multi-graph

Often we allow for multiple edges between the same set of end vertices.

Definition
An (undirected, multi-) graph is an ordered triple

G := 〈V ,E , γ〉
where:

I V is non-empty set (of vertices, nodes);

I γ : E →
{

X ∈ 2V : 1 ≤ |X | ≤ 2
}

.

The elements of E are called edges.
We always assume: V ∩ E = ∅.
The order of a graph is the number of vertices |V |. Often, |E | is referred
to as the size of G , but often we specify both n := |V | and m := |E |.
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Graphs Undirected Graphs

An undirected multi-graph

A

B

C

D

E F
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Graphs Undirected Graphs

Graphs: Some definitions

Definition
Let G = 〈V ,E , γ〉 be an undirected graph.

(a) If γ(e) = {u, v} for some e ∈ E , then u and v are called adjacent (or:
connected by e).

(b) A path (or: walk) in G is a sequence

(v0, e1, v1, . . . , ek , vk)

such that e1, . . . , ek ∈ E and γ(ei ) = {vi−1, vi} (for each 1 ≤ i ≤ k).
k is referred to as length, v0 as start vertex, and vk as end vertex of
the path.

(c) A cycle is a path (v0, . . . , ek , vk) with v0 = vk and k ≥ 1.

(d) A path (v0, . . . , ek , vk) is simple if ei 6= ej for all i 6= j .

(e) A path (v0, . . . , ek , vk) is elementary if v1 6= vj for 0 ≤ i 6= j ≤ k (but
v0 = vk is allowed).
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Graphs Undirected Graphs

Paths: An example

A

B

C

D

E F

Figure: A simple path visiting the nodes B,A,E ,D,F
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Graphs Undirected Graphs

Graph-theoretical notions

Let G = 〈V ,E , γ〉 be an undirected graph.

Definition

(a) G is connected if for each pair of vertices u and v , there exists a path
from u to v .

(b) G is complete if any pair of vertices is connected by an edge.

(c) G is a forest if G is cycle-free.

(d) G is a tree if G is cycle-free and connected.
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Graphs Undirected Graphs

Examples

A

B

C

D

E F

Figure: Connected, but not complete
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Graphs Undirected Graphs

Examples

A

B

C

D

E F

Figure: A not connected graph
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Graphs Undirected Graphs

Examples

A

B

C

D

E F

Figure: A forest
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Graphs Undirected Graphs

Examples

A

B

C

D

E F

Figure: A tree
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Graphs Undirected Graphs

Graph-theoretical notions

Let G = 〈V ,E , γ〉 be an undirected graph.

Definition
Let V ′ be a non-empty subset of V . Then G [V ′] = 〈V ′,E ′, γ′〉 with:

E ′ :=
{

e ∈ E : γ(e) ⊆ V ′
}

and γ′ := γ|E ′

is called the subgraph induced by V ′.

Definition
Let E ′ be a subset of E . Then G [E ′] = 〈V ′,E ′, γ|E ′〉 is called the partial
graph induced by E ′.

Definition
A clique in a graph G is a complete subgraph of G .
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Graphs Undirected Graphs

Examples

A

B

C

D

E F
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Graphs Directed Graphs

Directed Graph

Definition
A directed (multi-) graph (or: digraph) is an ordered tuple

G := 〈V ,A, α, ω〉
where:

I V is a non-empty set (of vertices or nodes),

I A is a set (elements of A are called arcs, edges, or arrows),

I α, ω : A→ V are functions.

α(a) is called the start vertex of a, ω(a) the end vertex of a.

If G has no parallel arcs (a, a′ ∈ A with α(a) = α(a′) and ω(a) = ω(a′)),
we can write A as a set of tuples:{

(α(a), ω(a)) ∈ V 2 : a ∈ A
}
.

In that case we use the notation 〈V ,A〉 instead of 〈V ,A, α, ω〉.
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Graphs Directed Graphs

Digraphs: Some notions

Most notions introduced for undirected graphs can easily be adapted for
directed graphs. For example:

Definition
A path in G is a sequence (v0, a1, v1, . . . , ak , vk) such that a1, . . . , ak ∈ A
and for each 1 ≤ i ≤ k , α(ai ) = vi−1 and ω(ai ) = vi .

g +(v): the outdegree of v , the number of arcs that start from v
g−(v): the indegree of v , the number of arcs that end in v

parents of v : nodes with an arc to v
childs of v : nodes with an arc from v

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012 37

/ 62



Graphs Directed Graphs

A directed multi-graph

A

B

C

D

E F
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Graphs Directed Graphs

A directed multi-graph

A

B

C

D

E F

Figure: A directed graph with a (strongly) connected subgraph
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Graphs Labeled Graphs

Labeled graphs

Often graphs G = 〈V ,E/A, . . . 〉 are equipped with labeling functions.

Let L be a not-empty set of labels.
Vertex labeling: a function l : V → L that assigns to each v a vertex label
l(v) ∈ L.

Edge labeling: a function l : E → L that assigns to each e ∈ E a label
l(v) ∈ L.

Example: In route planning, one can represent street networks as digraphs
with an arc labeling (expressing travelling distance between places/nodes).

The label set may be equipped with further structures. In the route
planning example, the labeling function is understood as a distance
function (metric space).
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Graphs Hypergraphs

Hypergraph

Graphs can be used to represent binary relations between nodes.
For relations of higher arity we need:

Definition
A hypergraph is a pair H := 〈V ,E 〉, where

I V is a set (of nodes, vertices),

I E is a set of non-empty subsets of V (called hyperedges), i.e.,
E ⊆ 2V \ {∅}.

Notice: Hyperedges may contain arbitrarily many nodes.

k-uniform hypergraph: each hyperedge contains exactly k vertices.
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Graphs Hypergraphs

Hypergraphs: An example

A

B

C

D

E

F
e1

e2

e3

Figure: A hypergraph
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Computational Complexity

4 Computational Complexity

O, Ω, etc.
Computational Problems
NP
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Computational Complexity O, Ω, etc.

Model of computation

I In the lecture we do not use a specific model of computation: any
Turing-complete abstract machine (Turing machine, (unit cost) RAM,
. . . ) suffices

I When analyzing algorithms, we use a uniform cost model:
constant costs are assumed for every machine operation (regardless of
the size of its input)

Landau symbols

Let M be the set of all functions f : N→ R, g ∈ M.

O(g) = {f ∈ M : ∃c ∈ R ∃n0 ∈ N ∀n > n0 : f (n) ≤ c · g(n)}
Ω(g) = {f ∈ M : ∃c ∈ R ∃n0 ∈ N ∀n > n0 : f (n) ≥ c · g(n)}
Θ(g) = O(g) ∩ Ω(g)
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Computational Complexity O, Ω, etc.

Data structures

I Runtime depends on used data structures

I For example: basic operations on a graph depend on how the graph is
represented (e.g., as an adjacency matrix or an adjacency list).

Let G = 〈V ,A, α, ω〉 be a digraph.
Adjacency matrix: n × n matrix (aij)1≤i ,j≤n such that aij is the number of
arcs from vertex vi to vertex vj .

Adjacency list: an array of lists, namely, for each vertex v , the list of v ’s
children (in undirected graphs: neighbors = adjacent vertices)
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Computational Complexity O, Ω, etc.

Adjacency matrix

Graph:

v1

v2

v3

v4

v5 v6

Adjacency matrix:

0 1 0 0 2 0
0 0 1 1 0 1
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
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Computational Complexity O, Ω, etc.

Adjacency list

Graph:

v1

v2

v3

v4

v5 v6

Adjacency list:

1→ (2, 5, 5)

2→ (3, 4, 6)

3→ ()

4→ (1, 2)

5→ (5)

6→ (4)
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Computational Complexity O, Ω, etc.

Comparing basic operations

Consider the following operations on a digraph (without parallel arcs):

I Arc: Check whether there is an arc from v to w ((v ,w) ∈ E ?);

I Deg+: Determine the outdegree of v (g +(v) = ?);

I Root: Check whether there exists a v with g−(v) = 0.

Data structure Memory Arc Deg+ Root

Adjacency matrix Θ(n2) O(1) O(n) O(n2)
Adjacency list Θ(n + m) O(g +(v)) O(g +(v)) O(n + m)

n: number of vertices; m: number of arcs/edges
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Computational Complexity Computational Problems

Computational problems

In the lecture we will study three types of computational problems:

I Decision problems
Expected output: YES/No

I Search problems
Expected output: a solution

I Optimization problems
Expected output: an optimal solution
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Computational Complexity Computational Problems

Decision problem

Let P be a set of problem instances and F be a unary property defined on
P.

Then the decision problem “x satisfies F ?” is defined as follows:

I Given: A problem instance x ∈ P

I Question: Does x satisfy condition F ?

Example

I Given: A digraph G = 〈V ,E 〉, vertices v1, v2 ∈ V .

I Question: Does there exist a path from v1 to v2 in G ?
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Computational Complexity Computational Problems

Search problem

Let P be a set of problem instances, S be the set of solutions, and R be a
binary relation R ⊆ P × S .

Then the search problem “Find a solution of x?” is defined as follows:

I Given: A problem instance x ∈ P

I Asked: A solution s ∈ S with (x , s) ∈ R

Example

I Given: A digraph G = 〈V ,E 〉, vertices v1, v2 ∈ V .

I Asked: Find a path from v1 to v2 in G (if there exists one; otherwise
“failure”)!
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Computational Complexity Computational Problems

Optimization problem

Let P be a set of problem instances, S be the set of solutions, R be a
binary relation R ⊆ P × S , and f : S → R be an objective function.

The optimization problem “Find an optimal solution of x?” is defined as
follows:

I Given: A problem instance x ∈ P

I Asked: A solution s ∈ S with (x , s) ∈ R that maximizes/minimizes f ,
i.e., f (s) is maximal/minimal among all s with (x , s) ∈ R.

Example

I Given: A weighted digraph G = 〈V ,E 〉, vertices v1, v2 ∈ V .

I Asked: Find a shortest path from v1 to v2 in G (if there exists one;
otherwise “failure”)!

Nebel, Hué and Wölfl (Universität Freiburg) Constraint Satisfaction Problems
April 23, 25, and 2012; May 2, 2012 52

/ 62



Computational Complexity NP

P, NP

P: class of decision problems that can be solved by a deterministic Turing
machine in polynomial time

NP: class of decision problems that can be solved by a non-deterministic
Turing machine in polynomial time

Alternative characterization of NP:
NP: class of decision problems P such that there exists a polynomial
verifier for P.
A verifier for a decision problem P is a procedure that, given a problem
instance x and a candidate solution s (called certificate), verifies that s is
a solution of x .
A verifier is polynomial if it verifies (x , s) ∈ R in polynomial time (it need
not run in polynomial time on input (x , s) /∈ R)
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Computational Complexity NP

NP-completeness

Consider decision problems P and P ′ encoded as formal languages L, L′

over alphabets Σ,Σ′.

Polynomial reduction: L′ is polynomially reducible to L, L′ ≤p L, if there
exists a total and polynomial time-computable function f : Σ′ → Σ such
that x ∈ L′ ⇐⇒ f (x) ∈ L.

Definition

I A decision problem L is NP-hard if for each decision problem L′ in
NP, it holds L′ ≤p L.

I A decision problem L is NP-complete if it is both in NP and NP-hard.
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Computational Complexity NP

SAT, 3SAT

Theorem (Cook)

The Boolean satisfiability problem, i.e., the problem of deciding whether a
propositional logic formula ϕ is satisfiable, is NP-complete.

3CNF-SAT formula: a proposional logic formula ϕ that is in conjunctive
normal form such that each clause contains at most 3 literals.

Theorem (3CNF-SAT)

The problem of deciding whether a 3CNF-SAT formula is satisfiable is
NP-complete.
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Computational Complexity NP

3-Colorability
The problem 3-Colorability is defined as follows:
Given an undirected, simple graph G = 〈V ,E 〉, is there a vertex coloring
c : V → {1, 2, 3} such that for each pair of adjacent vertices v , v ′ in G ,
c(v) 6= c(v ′).

Theorem
3-Colorability is NP-complete.

Proof.
Obviously, 3-Colorability is in NP: we only need to guess the coloring c .
Then we check whether this coloring assigns different colors to adjacent vertices.
This can be done in polynomial time.

We now show that 3-Colorability is NP-hard by a polynomial reduction from
3CNF-SAT. Since 3CNF-SAT is NP-complete, each problem in NP can be
reduced to 3CNF-SAT and via 3CNF-SAT ≤p 3-Colorability, each
problem in NP can also be reduced to 3-Colorability.
. . .

(next slide . . . )
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Computational Complexity NP

3-Colorability
.
We construct a function that assigns to each 3CNF-SAT formula
ϕ = C1 ∧ · · · ∧ Cm a graph Gϕ such that

ϕ is satisfiable ⇐⇒ Gϕ has a coloring with colors {red, blue, green}.

We assume (w.l.o.g.) that each clause Cj consists of exactly three literals, i.e.,
Cj = (l1j ∨ lj2 ∨ lj3). Let x1, . . . , xn be the set of proposional variables that occur
in ϕ. Gϕ will contain the following subgraph GT (with 2n + 1 vertices):

u

x1

x1

x2

x2

. . .

xn

xn
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Computational Complexity NP

3-Colorability

.
For each clause Cj (1 ≤ j ≤ m) we add a subgraph Gj (clause gadget) with new
vertices aj , bj , cj , yj , zj and a vertex v which is the same in each of the clause
gadgets:

v

yj

zj

aj

bj

cj

Vertices in Gj are connected by an edge to vertices in GT as follows:

I an edge {u, v}
I edges {aj , lj1}, {bj , lj2} , {cj , lj3} (1 ≤ j ≤ m)
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Computational Complexity NP

3-Colorability
.
For example, if ϕ = (x1 ∨¬x2 ∨ x4)∧ . . . , Gϕ contains the following subgraph G1:

u

x1

x1

x2

x2

. . .

x4

x4

v

y1

z1

a1

b1

c1

For example: if V (x1) = 1,V (x2) = 1,V (x4) = 0, . . . .,
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Computational Complexity NP

3-Colorability

Proof (summary).
Thus we have constructed a function f that assigns to each 3CNF-SAT formula
ϕ = C1 ∧ · · · ∧ Cm a graph Gϕ such that

ϕ is satisfiable ⇐⇒ Gϕ has a coloring with colors {red, blue, green}.

Since the constructed graph Gϕ has 2n + 5m + 2 vertices, f can be computed in
polynomial time.

Notice:

I Actually, what we have proven is: 3CNF-SAT ≤p k-Colorability, for
k ≥ 3.

I The corresponding search problem “Given a graph, find a 3-coloring . . . ” is
in the complexity class Function NP (FNP).
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Computational Complexity NP

Summary

I Short reminder on set-theoretical notions and operations

I Even more operations can be defined for relations

I Distinguish relations (as sets) and relations over variables

I Very basic reminder of graph-theoretical notions

I . . . and complexity theory

I Example: k-colorability is an NP-complete decision problem

I . . . for k ≥ 3; for k = 2 it is tractable
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Computational Complexity NP
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