Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. Hué M. Westphal Sommersemester 2012 University of Freiburg Department of Computer Science

Exercise Sheet 11 Due: Monday 23.07.2012

Exercise 11.1 (3 Points)

Let D be the domain $D = \{0, 1\}$ and Γ the constraint language $\Gamma = \{\neq, R_{\vee}\}$. Further let d be the ternary Boolean operation defined by

 $d(x, y, z) := (x \land y) \lor (y \land z) \lor (x \land z).$

Prove Γ is polynomial by the following steps:

(a) Prove the operation d is a polymorphism of Γ .

(b) Prove the operation d is a near-unanimity operation.

Hint: Constraint languages with a near-unanimity operation as polymorphism are polynomial.

Exercise 11.2 (3 Points)

Let $V = (v_1, \ldots, v_5)$ be variables with corresponding domains $D = (\{0\}, \{1, 2\}, \{0, 2, 4\}, \{0, 3\}, \{1, 3, 4\}).$

Establish generalized arc consistency for the *alldifferent* (v_1, \ldots, v_5) constraint. For this use the graph-based algorithm presented in the lecture and provide the value graph, the strongly connected components, and the used edges.

Exercise 11.3 (4 Points)

Let $V = (v_1, \ldots, v_n)$ be variables with the corresponding domains D_i , $i \in \{1, \ldots, n\}$ and G the corresponding value graph.

Prove that the constraint *alldifferent* (v_1, \ldots, v_n) is generalized arc-consistent, if and only if every edge in G belongs to a matching in G that covers V.