Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. HuéM. WestphalSommersemester 2012

University of Freiburg Department of Computer Science

Exercise Sheet 10 Due: Monday 16.07.2012

Exercise 10.1 (1+1+2 Points)

Provide the relations expressed by the following gadgets:

- (a) Domain $D = \{1, 2, 3, 4, 5\}$ with the usual ordering of the natural numbers $\langle v, w, z \rangle$, constraints $((v, w), \langle v \rangle)$ and $((w, z), \langle v \rangle)$, and construction site (z, v).
- (b) Domain $D = \{R, G, B, Y\}$, variables $\{a, b, c, d\}$, constraints $((a, b), \neq)$, $((b, c), \neq)$, $((c, d), \neq)$, $((a, c), \neq)$, $((b, d), \neq)$, and construction site (a, d).
- (c) Domain $D = \{0, 1, 2, 3, 4\}$, variables $\{x, y, z, v, w\}$, constraints $x + 2y + 3z \equiv 4 \pmod{5}$, $2x + z + 3w \equiv 1 \pmod{5}$, $z \equiv 3 \pmod{5}$, $v + 4y \equiv 2 \pmod{5}$ and $x + y + z + v + w \equiv 0 \pmod{5}$, and construction site $\{x, z, w\}$.

Exercise 10.2 (6 Points)

Utilize Shaefer's dichotomy theorem to classify each of the following Boolean constraint languages as polynomial or NP-complete. If you classify the language as polynomial, provide which Schaefer class it falls into and an argument for this. For NP-complete cases, you do not have to provide a proof, nor an argument why it does not fall into any of the Schaefer classes.

- (a) *Colorability* (with two colors): only inequality constraints
- (b) Parity: consider k-ary constraints $(k \in \mathbb{N}_1)$ that express an even number of variables are assigned 1.
- (c) Balance: consider k-ary constraints (for even $k \in \mathbb{N}_1$) that express that exactly half of the variables are assigned 1.
- (d) Majority: consider k-ary constraints (for uneven $k \in \mathbb{N}_1$) that express that the majority of variables are assigned 1.
- (e) One-third: consider k-ary constraints (for $k \in \mathbb{N}_1$ a multiples of 3) that express exactly one-third of the variables are assigned 1.
- (f) Sheffer stroke: consider constraints that can be defined based on the binary relation R_{\parallel} defined by the Boolean function $\mid: \neg x \vee \neg y$.