Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. Hué
M. Westphal
Sommersemester 2012

University of Freiburg

Department of Computer Science

Exercise Sheet 6
Due: Monday 18.06.2012

Exercise 6.1 (3 Points)

Let N be a constraint network. Prove that the following three statements are equivalent:
(a) The unordered search space of N is backtrack-free.
(b) The ordered search space of N is backtrack-free along each ordering σ.
(c) N is globally consistent.

Exercise $6.2(1+2+2+2$ Points)
Consider the following coloring problem, where every area is either red, green, or blue and every two areas that share a border must not have the same color.

(a) Formalize this problem as a binary constraint problem N with the regions $V=\left(v_{1}, \ldots, v_{5}\right)$ as the variables, where every variable has the same domain $D=\{\mathbf{r}, \mathbf{g}, \mathbf{b}\}$.
(b) How many states are in the unordered search space? How many goal states (i.e., solutions) are there?
(c) Draw the ordered search space for $\sigma_{1}=v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Because of the size (and symmetry) of the tree, you may skip drawing the subtrees starting in $v_{1}=\mathbf{b}$ and $v_{1}=\mathbf{g}$. Mark the dead ends in your drawing. How many states are in the complete (i.e., including the skipped subtrees) ordered search space? How many are dead ends?
(d) Draw the ordered search space for $\sigma_{2}=v_{5}, v_{1}, v_{2}, v_{3}, v_{4}$. Because of the size (and symmetry) of the tree, you may skip drawing the subtrees starting in $v_{5}=\mathbf{b}$ and $v_{5}=\mathbf{g}$. How many states are in the complete ordered search space? How many are dead ends?

