Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. Hué
M. Westphal
Sommersemester 2012

University of Freiburg

Department of Computer Science

Exercise Sheet 5

Due: Monday 11.06.2012
Exercise 5.1 (2+2 Points)
Let $D=\{0, \ldots, 5\}$, and N the constraint network defined by:

$$
\begin{aligned}
& \left\langle\left(v_{1}, v_{2}, v_{3}\right),(D, D, D),\left\{\left(\left(v_{1}, v_{2}\right),\left\{(x, y) \in D^{2} \mid x+y=3\right\}\right)\right.\right. \\
& \left.\left.\quad\left(\left(v_{2}, v_{3}\right),\left\{(x, y) \in D^{2} \mid x+y \leq 3\right\}\right),\left(\left(v_{1}, v_{3}\right),\left\{(x, y) \in D^{2} \mid x \leq y\right\}\right)\right\}\right\rangle
\end{aligned}
$$

(a) Apply the AC3 algorithm to N. Provide the state of the queue and the result of Revise (i.e., the resulting state of the current D_{i}) once for every iteration of the while loop.
(b) Apply the PC2 algorithm to N. Provide the state of the queue and the result of Revise-3 once for every iteration of the while loop.

Exercise 5.2 (2 Points)

Let N be a satisfiable constraint network and N_{0} its (non-binary) minimal network. Prove that N_{0} is globally consistent.

Exercise 5.3 ($1+1+2$ Points)
Let N be a binary, path-consistent constraint network with variables $V=$ $\left(v_{1}, \ldots, v_{n}\right)$ over the same Boolean domain $D_{i}=\{0,1\}, 1 \leq i \leq n$. Further, let all constraints be non-empty, i.e., $R_{\left(v_{i}, v_{j}\right)} \neq \emptyset$ for all $v_{i}, v_{j} \in V$.
We prove that N is always satisfiable by induction. This exercise is split into three parts: Part (a) is our base case and Part (c) is our induction step which relies on Part (b) as a helpful property.
(a) Prove that for every pair of distinct variables $v_{i}, v_{j} \in V$ there exists a consistent (partial) assignment for v_{i}, v_{j}.
(b) Let $l>1$ and A_{1}, \ldots, A_{l} be non-empty sets with $A_{m} \subseteq\{0,1\}, 1 \leq m \leq l$. Prove that if $\bigcap_{1 \leq m \leq l} A_{m}=\emptyset$, then there exist $1 \leq o \neq p \leq l$ such that $A_{o} \cap A_{p}=\emptyset$.
(c) Prove that a consistent (partial) assignment on $v_{1}, \ldots, v_{k-1}, 2<k \leq n$ can be extended to v_{k}.
Hint: You can construct a proof by contradiction: Assume that the partial assignment $\left(a_{1}, \ldots, a_{k-1}\right)$ cannot be extended to v_{k}, i.e., $\bigcap_{2 \leq i \leq k-1}\left\{a_{k} \mid\left(a_{i}, a_{k}\right) \in R_{\left(v_{i}, v_{k}\right)}\right\}=\emptyset$ and apply (b).
Thus, we have shown that path consistency decides satisfiability of binary constraint networks over a Boolean domain. Such constraint problems are tractable.

