Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. Hué M. Westphal Sommersemester 2012 University of Freiburg Department of Computer Science

Exercise Sheet 5 Due: Monday 11.06.2012

Exercise 5.1 (2+2 Points)

Let $D = \{0, \ldots, 5\}$, and N the constraint network defined by:

- $\left\langle (v_1, v_2, v_3), (D, D, D), \left\{ \left((v_1, v_2), \{ (x, y) \in D^2 \mid x + y = 3 \} \right), \\ ((v_2, v_3), \{ (x, y) \in D^2 \mid x + y \le 3 \}, ((v_1, v_3), \{ (x, y) \in D^2 \mid x \le y \}) \right\} \right\rangle$
- (a) Apply the AC3 algorithm to N. Provide the state of the queue and the result of Revise (i.e., the resulting state of the current D_i) once for every iteration of the while loop.
- (b) Apply the PC2 algorithm to N. Provide the state of the queue and the result of Revise-3 once for every iteration of the while loop.

Exercise 5.2 (2 Points)

Let N be a satisfiable constraint network and N_0 its (non-binary) minimal network. Prove that N_0 is globally consistent.

Exercise 5.3 (1+1+2 Points)

Let N be a binary, path-consistent constraint network with variables $V = (v_1, \ldots, v_n)$ over the same Boolean domain $D_i = \{0, 1\}, 1 \leq i \leq n$. Further, let all constraints be non-empty, i.e., $R_{(v_i, v_j)} \neq \emptyset$ for all $v_i, v_j \in V$.

We prove that N is always satisfiable by induction. This exercise is split into three parts: Part (a) is our base case and Part (c) is our induction step which relies on Part (b) as a helpful property.

- (a) Prove that for every pair of distinct variables $v_i, v_j \in V$ there exists a consistent (partial) assignment for v_i, v_j .
- (b) Let l > 1 and A_1, \ldots, A_l be non-empty sets with $A_m \subseteq \{0, 1\}, 1 \le m \le l$. Prove that if $\bigcap_{1 \le m \le l} A_m = \emptyset$, then there exist $1 \le o \ne p \le l$ such that $A_o \cap A_p = \emptyset$.
- (c) Prove that a consistent (partial) assignment on v₁,..., v_{k-1}, 2 < k ≤ n can be extended to v_k. *Hint:* You can construct a proof by contradiction: Assume that the partial assignment (a₁,..., a_{k-1}) cannot be extended to v_k, i.e., ∩_{2<i<k-1}{a_k | (a_i, a_k) ∈ R_(v_i, v_k)} = Ø and apply (b).

Thus, we have shown that path consistency decides satisfiability of binary constraint networks over a Boolean domain. Such constraint problems are tractable.