
Constraint Satisfaction Problems

B. Nebel, S. Wölfl, J. Hué M. Westphal Sommersemester 2012 University of Freiburg Department of Computer Science

Exercise Sheet 2 Due: 09.05.2012

Exercise 2.1 (1+2 Points)

Let $G = \langle V, A \rangle$ be a directed graph given by the following figure.

(a) **Strongly connected components** of a graph are the maximal strongly connected subgraphs.

List the strongly connected components of G.

(b) Let G' = ⟨V, E⟩ be the undirected simple graph obtained from G by setting {v, v'} ∈ E if and only if (v, v') ∈ A ∨ (v', v) ∈ A. List all cliques of G'. Hint: The definition allows for Cliques of size one.

Exercise 2.2 (2 Points)

A group of coworkers W is to be moved into new offices in two different buildings. Some workers dislike each other and moving any such two people into the same building leads to a conflict.

Decision problem: Given a finite set $W := \{w_1, \ldots, w_n\}$ of workers and a list of sets $\{w, w'\}$, with $w, w' \in W$ that indicate that w and w'dislike each other, is it possible to distribute the workers to two buildings such that no conflict arises?

Describe a polynomial time algorithm for this decision problem (and thus proof that it is solvable in polynomial time).

Exercise 2.3 (2+3 Points)

Given an undirected graph G = (V, E) and a positive integer $k \leq |V|$, we define the following decision problems:

Clique: Is there a subset $V' \subseteq V$ such that $|V'| \ge k$ and for each pair $v_1, v_2 \in V', v_1 \neq v_2$ it holds $(v_1, v_2) \in E$?

Vertex Cover: Is there a subset $V' \subseteq V$ such that $|V'| \leq k$ and for each edge $(v_1, v_2) \in E$ at least one of v_1 and v_2 belongs to V'?

Dominating Set: Is there a subset $V' \subseteq V$ such that $|V'| \leq k$ and such that every vertex $v \in V \setminus V'$ is connected to a vertex in V'?

Proof the NP-completeness of

- (a) Vertex Cover by reduction from Clique,
- (b) Dominating Set by reduction from Vertex Cover.