

Brainstormers-Tribots / openTribot

Overview

- Hardware
- Software
 - Framework
 - Image Processing
 - World Modeling / Self-Localization
 - Behavior and Skill Architecture
 - Reinforcement Learning
 - Teamplay
- Current Projects
 - OpenTribot
- Future Work

Brainstormers / Tribots

Machine Learning Learning

- 2003 2009 Project Group at Uni Dortmund, then Osnabrück
- 2 times Robocup Mid-Size World Champions (2006 & 2007)
- 4 times RoboCup Mid-Size German Open Champions

Hardwa Machine Learning Learning

Hardware of a Tribot Soccer Robot

- Custom 3- wheel Omnidirectional Base and Omnidirectional Firewire Camera
- Small Notebook running Linux
- Can-Bus Interface for Robot Motor Control
- Pneumatic Kicking Device
- Wi-Fi for Communication

Machine Learning LAB

Hardware of a Tribot Soccer Robot

Software Framework

- Worldmodel / Decision / Robot Control units
- Module based, Framework allows replacement of hand-written parts through learned / ai based parts
- Ability to act as a team (via wireless communication)

Machine Learning

Image Processing / Omnicam

- Light on a robocup field is very inconsistent.
- Automatic White Balance/ Exposure to automatically adapt to changing Light

Machine Learning

Image Processing / Omnicam

- Automatic Mask Generation to prevent misinterpreting the robot for obstacles
- Omni Directional Distance Calibration to make it possible to measure distances on the ground

Image Processing / Omnicam

Stefan Welker – Prof. Dr. Martin Riedmiller

Omnidirectional Vision Debug Image

Stereo Camera Configuration

- Goalkeeper needs to detect chip kicks, the need for 3d ball detection arises
- Stacked mechanical setup
- Stereo basis ca. 28 cm

Stereo Camera Configuration

Stefan Welker - Prof. Dr. Martin Riedmiller

completely different images due to

Machine Learning Learning

- different camera types
- fields of view
- Distortion
- resolution
- limited computation time

Stereo Camera Configuration

Stefan Welker - Prof. Dr. Martin Riedmiller

 Incomplete data problem while tracking ball

Machine Learning LAB

 Approach: CM Completion / Maximization, Regression

Pan Tilt Stereo Camera

Stefan Welker - Prof. Dr. Martin Riedmiller

Possible Future Camera Configuration ?

Software - World Model

- Sensor Fusion & Models used in the World-Model
- Self-localization
- Ball-model (robust regression / multiple hypothesis checking)
- Self-model (robust regression / MLP)
- Teammate / Opponent-Model (shared WM, robust regression)

Software - Self-localization

Stefan Welker - Prof. Dr. Martin Riedmiller

 Line transitions from the omni camera have been converted to real distances

Software - Self-localization

Stefan Welker – Prof. Dr. Martin Riedmiller

 An error metric for matching the lines to the field model can be calculated

Software - Self-localization

Stefan Welker – Prof. Dr. Martin Riedmiller

Minimization using gradient descent with R-Prop

Robot Behaviors and Skills

- Robot behavior is defined by using a class Framework oriented on the BDI approach (Belief / Desire / Intention)
- Complicated Graph-based state machines are avoided using arbitration

Example of Goalie Arbitration

Stefan Welker - Prof. Dr. Martin Riedmiller

Goalie "Stack"

Goalie

BGameStopped BGoaliePenalty

BGoalieGetAwayFromGoalPosts

BGoaliePositioningChipKick

BGoalieRaisedBall

BGoalieFetchBallNearGoalPost

BGoalieAttackBall

BGoalieFetchBall

BGoaliePositioning

BGoaliePatrol

decreasing priority

FSM / BDI Comparison Machine Learning LAB Stefan Welker - Prof. |

FSM / BDI Comparison

Some Important Skills

- Get the ball!
 - Must <u>always</u> work faster than the enemy robot ;)
 - Rolling ball must be no disadvantage
 - Must work everywhere on the field
- Dribble the ball
 - Move to a position not loosing the ball on the way
 - The ball could roll away
- Shoot if the chance to score is high
 - Don't dribble too much in front of the enemy goal

Stefan Welker - Prof. Dr. Martin Riedmiller

EXAMPLE 1

Static ball, approach from different positions dependent of goal direction

Stefan Welker - Prof. Dr. Martin Riedmiller

EXAMPLE 2

Moving ball

Necessary data:
-relative ball position
-relative ball speed

Stefan Welker - Prof. Dr. Martin Riedmiller

EXAMPLE 3

Dribbling to a position / goal

EXAMPLE 4

Trajectory Planning

- Trajectories are planned based on a geometric analysis of the configuration of the field and the dynamic properties of the robot.
- We do not generate whole trajectories but only waypoints
- The trajectory is replanned every 33 ms to cope with the dynamic environment.

Stefan Welker – Prof. Dr. Martin Riedmiller

EXAMPLE 5

Shooting at the goal looking for a free spot

Shoot !!!!

Learning on a real system

Machine Learning Learning

Stefan Welker - Prof. Dr. Martin Riedmiller

- Using real hardware for Learning presents challenges
 - Testing is a lot of work => Algorithms that learn fast are needed.
 - Delays make the state non markovian

robot moves up to 40cm during this time!

Learning on a real system

Stefan Welker - Prof. Dr. Martin Riedmiller

Approach : Prediction of the state

Model free Reinforcement Learning without a simulation is possible!

Reinforcement Learning

- Catching a passed Ball (Keeping the ball from jumping away)
- Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally
- Omnidirectional Motor Control
- Learned Skills were actually used during Robocup Tournaments

Reinforcement Learning

- Catching a passed Ball (Keeping the ball from jumping away)
- Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally
- Omnidirectional Motor Control
- Learned Skills were actually used during Robocup Tournaments

Reinforcement Learning

- Catching a passed Ball (Keeping the ball from jumping away)
- Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally
- Omnidirectional Motor Control
- Learned Skills were actually used during Robocup
 Tournaments

Teamplay / Cooperation

Machine Learning Learning

- Hard to implement Useful Robot Cooperation
- Implicit Cooperation through Knowledge / Explicit Cooperation through Communication
- Dynamic Role Change
- Defense Rotation
- Subteams
- Passing
- Dynamic Chain of Command

Example: Pass

Current Project: openTribot

Stefan Welker - Prof. Dr. Martin Riedmiller

DFG funded Project

Machine Learning

- Open Source Hardware
 / Software Platform for
 the Robotcup MidSize
 League
- Designed in Cooperation with Harting KgaA

openTribot Hardware

Machine Learning Learning

- Custom 3- wheel omni-drive, with powerful brushless motors, strong lipo batteries (5 m/s)
- Omnidirectional USB camera
- Netbook w/ Linux
- Can-Bus, high Pressure Kicking device, 6-dof IMU
- Modular design

Prototype Hardware

Stefan Welker - Prof. Dr. Martin Riedmiller

Custom CNC milled chassis

Future Projects

- Making the Robot intelligent enough to play in a mixed team with other Robots
- Optimize Robot performance
- Elaborate on the Learning aspect
- Making the Setup easy
- Rent-A-Robot
- Technical Challenges in Robocup

Videos online

Stefan Welker - Prof. Dr. Martin Riedmiller

 Check our site http://ml.informatik.uni-freiburg.de for links to videos or search Tribots Robocup in Google Videos!

Thank you for your attention!

Stefan Welker - Prof. Dr. Martin Riedmiller

- If you are interested you are welcome to get involved in our projects!
- Please come by my office on Thursdays if you like!
 (Building 79, Room 0 00 06)
- Feel free to join the Robocup AG Mid-Size in the next semester.

http://ml.informatik.uni-freiburg.de/people/welker/info