Brainstormers-Tribots / openTribot

Stefan Welker - Prof. Dr. Martin Riedmiller

Machine AB

Pushing Performance

Brainstormers / Tribots

Stefan Welker - Prof. Dr. Martin Riedmiller

- 2003 2009 Project Group at Uni Dortmund, then Osnabrück
- 2 times Robocup Mid-Size World Champions (2006 & 2007)
- 4 times RoboCup Mid-Size German Open Champions

Overview

Stefan Welker - Prof. Dr. Martin Riedmiller

- Hardware
- Software
 - Framework
 - Image Processing
 - World Modeling / Self-Localization
 - Behavior and Skill Architecture
 - Reinforcement Learning
 - Teamplay
- Current Projects
 - OpenTribot
- Future Work

Hardware of a Tribot Soccer Robot

- Custom 3- wheel Omnidirectional Base and Omnidirectional Firewire Camera
- Small Notebook running Linux
- Can-Bus Interface for Robot Motor Control
- Pneumatic Kicking Device
- Wi-Fi for Communication

Image Processing / Omnicam

Stefan Welker – Prof. Dr. Martin Riedmiller

- Light on a robocup field is very inconsistent.
- Automatic White Balance/ Exposure to automatically adapt to changing Light

Software Framework

Machine Learning Learning

Stefan Welker - Prof. Dr. Martin Riedmille

- Worldmodel / Decision / Robot Control units
- Module based,
 Framework allows replacement of hand-written parts through learned / ai based parts
- Ability to act as a team (via wireless communication)

Image Processing / Omnicam

- Automatic Mask
 Generation to prevent
 misinterpreting the robot
 for obstacles
- Omni Directional
 Distance Calibration to make it possible to measure distances on the ground

Image Processing / Omnicam

Stefan Welker - Prof. Dr. Martin Riedmiller

Omnidirectional Vision Debug Image

Stereo Camera Configuration

- completely different images due to
 - different camera types
 - fields of view
 - Distortion
 - resolution
- limited computation time

Stefan Welker - Prof. Dr. Martin Riedmille

Stereo Camera Configuration

 Goalkeeper needs to detect chip kicks, the need for 3d ball detection arises

- Stacked mechanical setup
- Stereo basis ca. 28 cm

Stereo Camera Configuration

- Incomplete data problem while tracking ball
- Approach: CM Completion / Maximization, Regression

REIBURG

Machine Learning

Pan Tilt Stereo Camera

Stefan Welker – Prof. Dr. Martin Riedmille

Possible Future Camera Configuration ?

Software - Self-localization

Stefan Welker – Prof. Dr. Martin Riedmille

 Line transitions from the omni camera have been converted to real distances

Software – World Model

- Sensor Fusion & Models used in the World-Model
- Self-localization
- Ball-model (robust regression / multiple hypothesis checking)
- Self-model (robust regression / MLP)
- Teammate / Opponent-Model (shared WM, robust regression)

Software – Self-localization Machine Learning LAB Stefan Welker – Prof. Dr. Martin Riedmiller

 An error metric for matching the lines to the field model can be calculated

Software – Self-localization

Stefan Welker - Prof. Dr. Martin Riedmille

Minimization using gradient descent with R-Prop

Robot Behaviors and Skills

Stefan Welker - Prof. Dr. Martin Riedmiller

- Robot behavior is defined by using a class
 Framework oriented on the BDI approach (Belief / Desire / Intention)
- Complicated Graph-based state machines are avoided using arbitration

Example of Goalie Arbitration Machine Learning LAB Stefan Welker - Prof. Dr. Martin Riedmiller

Goalie "Stack"

EXAMPLE 1 Static ball, approach from different positions dependent of goal direction

Some Important Skills Machine IAB States Wolfer Day States Wolfer D

Stefan Welker - Prof. Dr. Martin Riedmiller

- Get the ball!
 - Must <u>always</u> work faster than the enemy robot ;)
 - Rolling ball must be no disadvantage
 - Must work everywhere on the field
- Dribble the ball
 - Move to a position not loosing the ball on the way
 - The ball could roll away
- Shoot if the chance to score is high
 - Don't dribble too much in front of the enemy goal

Necessary data: -relative ball position -relative ball speed Stefan Welker - Prof. Dr. Martin Riedmiller

Dribbling to a position / goal

EXAMPLE 4

Trajectory Planning

- Trajectories are planned based on a geometric analysis of the configuration of the field and the dynamic properties of the robot.
- We do not generate whole trajectories but only waypoints
- The trajectory is replanned every 33 ms to cope with the dynamic environment.

Skill Implementation Machine Learning Stefan Welker - Prof. Dr. Martin Riedmiller

EXAMPLE 5 Shooting at the goal looking for a free spot

aim at right goal post...

Learning on a real system Stefan Welker - Prof. Dr. Martin Riedmiller

- Using real hardware for Learning presents challenges
 - Testing is a lot of work => Algorithms that learn fast are needed.
 - Delays make the state non markovian

robot moves up to 40cm during this time:

Approach : Prediction of the state

Model free Reinforcement Learning without a simulation is possible!

Reinforcement Learning Machine Learning LAB Stefan Welker – Prof. Dr. Martin Riedmiller

- Catching a passed Ball (Keeping the ball from jumping away)
- Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally
- Omnidirectional Motor Control
- Learned Skills were actually used during Robocup Tournaments

Reinforcement Learning

Machine Learning LAB

Stefan Welker - Prof. Dr. Martin Riedmille

- Catching a passed Ball (Keeping the ball from jumping away)
- Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally
- Omnidirectional Motor Control
- Learned Skills were actually used during Robocup Tournaments

Reinforcement Learning

Catching a passed Ball (Keeping the ball from

jumping away)

 Keep the Ball from rolling away while Dribbling and Moving Omnidirectionally

 Omnidirectional Motor Control

 Learned Skills were actually used during Robocup Tournaments

Teamplay / Cooperation

Stefan Welker - Prof. Dr. Martin Riedmille

- Hard to implement Useful Robot Cooperation
- Implicit Cooperation through Knowledge / Explicit Cooperation through Communication
- Dynamic Role Change
- Defense Rotation
- Subteams
- Passing
- Dynamic Chain of Command

Example: Pass

Stefan Welker - Prof. Dr. Martin Riedmiller

Current Project: openTribot

- DFG funded Project
- Open Source Hardware
 / Software Platform for the Robotcup MidSize League
- Designed in Cooperation with Harting KgaA

openTribot Hardware

- Custom 3- wheel omni-drive, with powerful brushless motors, strong lipo batteries (5 m/s)
- Omnidirectional USB camera
- Netbook w/ Linux
- Can-Bus, high Pressure Kicking device, 6-dof IMU
- Modular design

Custom CNC milled chassis

 Check our site http://ml.informatik.uni-freiburg.de for links to videos or search Tribots Robocup in Google Videos!

Future Projects

tefan Welker – Prof. Dr. Martin Riedmiller

- Making the Robot intelligent enough to play in a mixed team with other Robots
- Optimize Robot performance
- Elaborate on the Learning aspect
- Making the Setup easy
- Rent-A-Robot
- Technical Challenges in Robocup

Thank you for your attention!

Stefan Welker - Prof. Dr. Martin Riedmiller

- If you are interested you are welcome to get involved in our projects!
- Please come by my office on Thursdays if you like! (Building 79, Room 0 00 06)
- Feel free to join the Robocup AG Mid-Size in the next semester.

http://ml.informatik.uni-freiburg.de/people/welker/info