Agenda Problem Solving by PART 1 **Case-Based Reasoning** [AI&ML] Introduction to CBR 1 PART 1 2. Knowledge and Case Representation 3. Similarity Joint Lecture Similarity-Based Retrieval 4. "Artificial Intelligence" and "Machine Learning" Sommersemester 2010 11.05.2010 PART 2 [only ML] 5. Solution Adaptation Dr. Thomas Gabel 6. Learning in Case-Based Reasoning Machine Learning Lab 7. Applications References 8. Machine earning Machine Learning Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010 Case-Based Reasoning is ... · an approach to model the way humans think an approach to build intelligent systems ٠ Central Ideas: 1. INTRODUCTION store experiences made → as cases solving a new problem do the following What is Case-Based Reasoning? - recall similar experiences (made in the past) from memory - reuse that experience in the context of the new situation (reuse it partially, completely or modified) - new experience obtained this way is stored to memory again Machine Learning

Classification of CBR (I)

- sub-discipline of Artificial Intelligence
- belongs to Machine Learning methods
 - learning process is based on analogy ➔ not on deduction or induction
 - best classified as supervised learning (recall the distinction between supervised, unsupervised and reinforcement learning methods typically made in Machine Learning)
 - learning happens in a memory-based manner
 - in a model-based approach training, data is used in order to create a model
 - in the domain considered, the model learnt can then be used, for example, for prediction or classification purposes
 - · most "work" (calculations) are done when building the model
 - by contrast: in a memory-based approach, most calculations are done at the time of application, i.e. when doing prediction or classification
 - "most", but not "all" → the necessary calculations at application time can be supported and prepared by creation of suitable data structures (e.g. kd-trees) at storing time
 - therefore, memory-based approaches are sometimes also called "lazy learning"

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Case-Based Reasoning and Cases

- "Case-Based Reasoning is [...] reasoning by remembering."Leake, 1996
- "A case-based reasoner solves new problems by adapting solutions that were used to solve old problems." Riesbeck & Schank, 1989
- "Case-Based Reasoning is a recent approach to problem solving and learning [...]" Aamodt & Plaza, 1994
- ",Case-Based Reasoning is both [...] the ways people use cases to solve problems and the ways we can make machines use them." Kolodner, 1993

What is a Case?

a) Cognitive Science View:

Cases are abstractions of events, that are limited in space and time; they represent episodic knowledge.

b) Technical View:

A case is a desciption of a problem situation (that actually occurred) together with certain experiences that could be obtained during processing and solving the problem.

Classification of CBR (II)

- one of the few commercially/industrially really successful AI methods
 - customer support, help-desk systems: diagnosis and therapy of customer's problems, medical diagnosis
 - product recommendation and configuration: e-commerce
 - textual CBR: text classification, judicial applications (in particular in the countries where common law (not civil law) is applied) [like USA, UK, India, Australia, many others]
- applicability also in ill-structured and bad understood application domains

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Simplified CBR Model

Solve new problems by selecting cases used for similar problems and by (eventually) adapting the belonging solution.

When is CBR of Relevance?

- When a domain theory does not exist, but example cases are easy to find.
- When an expert in the domain is not available, is too expensive, or is incapable of articulating verbally his performance, but example cases are easy to find.
- When it is difficult to specify domain rules, but example cases are easy to find.
- When cases with similar solutions have similar problem descriptions.
 - i.e. there exists a similarity metric for problem descriptions and a corresponding set of adaptation rules
- When a case base already exists.

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

A Simple Example Scenario: Call Center (I)

- Task: Technical Diagnosis of Car Faults
 - symptoms are observed (e.g. engine does not start) and values are measured (e.g. battery voltage = 6.3V)
 - goal: find the cause for the failure (e.g. battery empty) and a repair strategy (e.g. change battery)

Case-Based Diagnosis

- a case describes a diagnostic situation and contains
 - · a description of the symptoms
 - description of the failure and the cause
 - · description of a repair strategy
- store a collection of cases in the case base
- find a case similar to the current problem and reuse the repair strategy

Machine Learning

Contents of a Case

Mandatory

- problem part
- solution part

Optionally

- context (e.g. justifications)
- pointer to other relevant cases
- · solution quality assessment
- · steps of the solution
- → The main difficulty arises, when the actual situation is not identical to the previous one. Then, inexactness is involved.
- → A main feature of CBR techniques is that they allow inexact / approximate reasoning in a controlled manner.

Machine Learning

Machine **PAB**

Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

A Simple Example Scenario: An Example Case (II)

- A case describes a particular diagnostic situation.
- A case records several features and their specific values occurred in that situation.

\rightarrow A case is not a general rule.

A Simple Example Scenario: Solving a New Diagnostic Problem (III)

CBR Cycle (R4, [Aamodt&Plaza, 1994])

Confirmed

Solution

- retrieve: find most similar case(s)
 - similarity measures
 - explanation-based methods
 - case-base organisation (data structures)
- reuse: transform/adapt solution
 - different types of solution transformation (none, interactive, derivational, etc.)
 - different methods (rule-based, constraint satisfaction, model-based etc.)
- revise: verify/improve solution
 - no verification
 - verification by simulation
 - verification in the real world
- retain: keep the experience made
 - learn new cases
 - learn similarity assessment
 - learn case base organization
 - learn solution adaptation Machine Learning

break light does not work

: 1990

: 12.6V

Reuse and Retain (IV) ٠ Reuse Problem (Symptoms): Problen front light does not work - adapt the solution Solution how do differences Diagnosis front light fuse defect in the problem affect Renair repair front light fuse the solution roblem (Symptoms): New Solution: Audi 80 Diagnosis break light fuse defect repair break light fuse Retain Problem (Symptoms): Problem break light does not work - if diagnosis is correct: : Audi A80 store new case Year ŝ Battery Voltage add case to case base Case State of Light State of Light Switch Solution: - Diagnosis : break light fuse defect - Repair : replace break light fuse Machine **†**AB Learning Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

A Simple Example Scenario:

Advantages of CBR (I)

- · Avoidance of High Knowledge Acquisition Effort
 - case knowledge is usually easily acquirable
 - not much general knowledge required
- Simpler Maintenance of the Knowledge in the System
 - maintenance by adding/removing cases from the case base
 - cases are independent of one another and easily interpretable (even for non-experts)
- Facilitation of Intelligent Retrieval (compared to data-base ٠ systems)
 - DBMS often give too few/many results

Advantages of CBR (II)

- High Quality of Solutions for Poorly Understood Domains
 - case-based systems can be made to retain only ``good" experience in memory
 - if only little adaptation is necessary for reuse, this will not impair the solution's quality too much
- High User Acceptance
 - provided solution corresponds to actual experience
 → may increase trust in the solution
 - selected case and solution adaptation can be explicitly presented to the user
 - problems of rule-based / neural network-based systems
 - black boxes
 - inference process is not traceable or hidden
 - provided solutions are difficult to explain

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Typical Application Fields (II)

- · Remarks concerning analytical tasks:
 - main focus is on analysing a given situation
 - classification (assign objects to a class Ki∈ {K1,...,Kn})
 → e.g. recognition of sponges
 - diagnosis (classification + verification + therapy)
 → e.g. fault diagnosis in Airbus engines
 - evaluation/regression (like classification, but assignment of realvalued assessments):
 - \rightarrow e.g. credit risk assessment
 - decision support (search for specific information relevant for decisionmaking)
 - \rightarrow e.g. web-based product catalogues, like online travel agencies
 - prediction (like classification + time dependency)
 → e.g. prediction of the probability of failure of a machine's part

- Remarks concerning synthetic tasks:
 - main focus is on composing a complex solution from simpler components
 → focus is often on solution adaptation
 - configuration: e-commerce scenario → product configuration (e.g. personal computers)
 - design: reuse of construction plans in civil engineering
 - nlanning: production planning

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

CBR for Classification (I)

- A classifier for a set M is a mapping f:M→ (where I is a finite index set).
 - → A case-based classifier is given by a case base, a similarity measure and the principle of the nearest neighbour.
- Definition: Given a case base CB, a similarity measure sim and an object (problem) q∈ M, we call c=(p,s)∈ CB the *Nearest Neighbour* to q, if: for all (p',s')∈ CB it holds sim(q,p)≥ sim(q,p').
- Definition: In Nearest-Neighbour Classification each new object (query) q∈ M is assigned the class s∈ I of q's nearest neighbour in CB, i.e. when

$$N = (p_{NN}, s_{NN}) = \underset{c \in CB}{\operatorname{arg\,max}} sim(q, c)$$

then q is assumed to belong to class s_{M} .

CBR for Classification (II)

- Note: The classifier defined by the pair (CB,sim) is not unique, if there is more than one nearest neighbour.
- Extension to k-NN Classification:
 - The k most similar neighbours of q are considered. Typically, a majority voting is applied to determine the class of the query q.
 - Formally: Let NN_k(q)={((p₁,s₁),(p₂,s₂),...,(p_k,s_k))} denote the set of k nearest neighbors of q. If we denote by $n_i = \sum_{i=1}^k I(s_i = i)$

the frequency of class label i within the k nearest neighbor, then q is assumed to belong to class $s = \arg \max_{i \in I} n_i$

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

2. KNOWLEDGE AND CASE REPRESENTATION

What forms of knowledge are parts of a CBR system? How can cases be represented?

k-Nearest Neighbor Classification

· Demonstration video on the k-NN classifier

(c) Antal van den Bosch, Tilburg University

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Knowledge Container Model [Richter, 1989]

- "In order to solve problems, one needs knowledge."
- Knowledge of a CBR System
 - vocabulary: knowledge representation
 - retrieval: similarity assessment (measures)
 - solution transformation: rules
 - cases
- Knowledge Management
 - as the environment may change, maintenance of the containers' contents over the lifetime of the CBR system is crucial to guarantee its continued usability

Case Contents

Problem / Situation Information

must cover all the information that is necessary to decide if this case is applicable for a new situation

- · target of the problem
- constraints
- characteristics

new situation = query

Solution

 contains all the information that describes a solution to the problem sufficiently

accurately

- ➔ solution itself
- ➔ justifications
- ➔ possible alternative solutions
- steps that were tried, but failed

Solution Evaluation

- → feedback from the real world
 - ➔ How good was the solution for the problem?

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Case Representation Formalisms (II)

- · Choice of attributes
 - must allow for the decision whether a case and a new situation are similar
 - should avoid redundancies
 - should represent independent properties of a case
- Disadvantages
 - no structural or relational information is representable
 - no ordering information (e.g. sequence of actions) is representable
- Advantages
 - straightforward representation
 - easy to understand and implement
 - cases are easy to store (usage of databases)
 - efficient retrieval
- Example
 - recall the example from the Introduction

Attributes

Case Representation Formalisms (I)

Attribute-Value Based Case Representation

- Case (problem and solution) is represented by pairs of attributes and belonging values.
 - e.g.: price = 9.95€
- Set of attributes $\{A_1, \dots, A_n\}$ is (in general) fixed for all cases.
- To each attribute A_i there is an associated domain D_i and for each attribute's value it holds $a_i \in D_i$, e.g.
 - numerical attributes (Integer or Real or subsets of those)
 - symbolic attributes (finite domains, $D_i = \{d_1, \dots, d_m\}$)
 - textual attributes (strings)
- Note:

- Choice of domains is mainly influenced by the requirements for similarity computation and solution adaptation.

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Case Representation Formalisms (III)

Object-Oriented Case Representation

- Refinement and more structured extension of attribute-value based representation
- Compositing of related attributes to object descriptions; each object is described by a fixed set of attributes → Case = Set of Objects

Graph- and Tree-Based Representation	First-Order-Based Case Representation	
e.g. suited for atomic/molecule structures or electrical circuit designs	 problems and solutions are represented as sets of Grundatome (variable-free) 	
Hierarchical Case Representation	Generalised Cases	
each case is represented on several levels of abstraction	 each case describes sets of cases at once, which are highly similar to one another smaller case bases, simplified case/solution adaptation 	

3. SIMILARITY

When is a new problem (query) similar to a case's problem part? What forms of similarity measures are suitable?

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Similarity and Utility

- Purpose of Similarity: Selection of solutions that can be easily transferred / adapted to the problem at hand.
- Similarity = Utility for Solving a (new) Problem
- Note:
 - Utility is an a-posteriori criterion: In general, the utilitiy (of a case) can be estimated after having solved the problem.
 - Similarity concerning problem situations is an a-priori criterion: Similarity must be estimated before solving the problem.
- **Goal:** Similarity must approximate utility as accurately as possible.

- · Similarity is the central notion in Case-Based Reasoning.
- Similarity is always considered between problems (not solutions of cases).
- Selection of cases during the ``Retrieve" phase is based on the similarity of cases to a given query.
- Observation I: There is no universal similarity; similarity always relates to a certain purpose.
 - e.g. two cars can be similar if they have the same max speed or cost approximately the same \rightarrow different aspects of similarity
- → Observation II: Similarity is not necessarily transitive.
 - e.g. 10€ are similar to 12€, 12€ are similar to 14€ ... 100€ are similar to 102€. But: 10€ are not similar to 102€ → property of ``small numeric difference" is intransitive
- → Observation III: Similarity does not have to be symmetric.

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Similarity Measures

- *Idee:* Numerical modelling of similarity, capturing the degree of similarity
- **Definition:** A *Similarity Measure* on a set M is a realvalued function sim: $M^2 \rightarrow [0,1]$.
 - We say that sim is

- symmetric

Machine Learning

- reflexive iff.
 - iff. $\forall x \in M: sim(x,x) = 1$
 - iff. $\forall x, y \in M: sim(x, y) = sim(y, x)$
- Beyond ordinal information, similarity measures allow for a quantitative statement on the degree of similarity.
- **Definition:** Each similarity measure induces a *similarity relation* R_{sim} as

 $R_{sim}(x,y,u,v)$ iff. $sim(x,y) \ge sim(u,v)$

Distance Measures Definition: A Distance Measure on a set M is a real-valued function d: $M^2 \rightarrow \Re^+_{M}$. We say that sim is - reflexive iff. $\forall x \in M: d(x,x) = 0$ iff $\forall x, y \in M: d(x, y) = d(y, x)$ - symmetric **Definition:** A distance measure d on a set M is a *Metric* and ٠ (M,d) a *Metric Space* if ∀x,y∈M: $d(x,y) = 0 \rightarrow x=y$ $d(x,y) + d(y,z) \ge d(x,z)$ $\forall x, y, z \in M$: Definition: Each distance measure induces a similarity relation R, as $\forall x, y, u, v \in M$: $R_{u}(x,y,u,v)$ iff. $d(x,y) \le d(u,v)$ $\forall x, y, z \in M$: $y \ge x$ iff. $d(z,x) \le d(z,y)$ Machine **Learning** Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Examplary Similarity Measures (I)

(for attribute-value based case representations)

Hamming Distance $H(x,y) = n - \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \sum_{i=1}^{n} (1-x_i)(1-x_i)$

- for binary features
- $x=(x_1,...,x_n), x_i \in \{0,1\}$
- $H(x,y) \in \{0,...,n\}$
- H(x,y) is the number of attributes with differing values

y_i)

- H is a distance measure: H(x,x)=0, H(x,y)=H(y,x)
- $H((x_1,...,x_n), (y_1,...,y_n)) = H((1-x_1,...,1-x_n), (1-y_1,...,1-y_n))$

SMC (Simple Matching Coefficient) $SMC(x,y) = 1 - \frac{n - (a+d)}{n} = \frac{a+d}{n} = 1 - \frac{b+c}{n}$

- $a=\Sigma x_i y_i, b=\Sigma x_i(1-y_i), c = \Sigma (1-x_i)y_i, d = \Sigma (1-x_i)(1-y_i)$ $\Rightarrow n=a+b+c+d \Rightarrow H(x,y) = b+c = n-(a+d)$
- transformation of the Hamming distance into a compatible similarity measure by $f(d)=1-d/d_{max}$ yields the simple matching coefficient

Relation Between Distance and Similarity Measures

- **Definition:** A similarity measure sim and a distance measure d are called *Compatible* if and only if $\forall x,y,u,v \in M: R_{sim}(x,y,u,v) \leftrightarrow R_{d}(x,y,u,v)$
- Lemma (Measure Transformation): If there is a bijective, order-reversing mapping f:ℜ₀⁺→[0,1] with

f(0) = 1f(d(x,y)) = sim(x,y)

- then sim and d are compatible.
- *Note:* A transformation function f can be employed to construct a compatible pendant for a given sim or d, respectively.
- Examples:

$$- f(x) = 1 - x/(x+1)$$

$$-f(x) = 1 - x/x_{max}$$

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Examplary Similarity Measures (II)

(for attribute-value based case representations)

SMC (Simple Matching Coefficient, ctd.)

- is not restricted to binary features (cf. previous slide)
- usable for
 - nominal discrete variables without natural ordering (e.g. colours)
 - ordinal discrete variables with natural ordering (e.g. school grades)

$$SMC(x, y) = \frac{1}{n} \sum_{i=1}^{n} I(x_i = y_j)$$

Examplary Similarity Measures (II)

(for attribute-value based case representations)

Measures for Real-Valued Attributes

- x_i,y_i∈ ℜ for all i
- generalisations of the Hamming distance
 _____ city-block metric d,

$$d_1(x, y) = \sum_{i=1}^n |x_i - y_i|$$

Euclidean distance d₂

$$d_2(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

- weighted Euclidean distance d_{2w}
 - counteract different spreads of different variables
 - different variables
 weights w must be specified
- _ p-norm d

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Note: Similarity measures for other case representations (e.g.

object-oriented, graph-based,

etc.) are not considered in this lecture: see literature references

Examplary Similarity Measures (IV)

(for attribute-value based case representations)

Measures for Sparsely Filled Cases

- If zeros are dominating, a generalization of the SMC is applied.
- Let n denote the number of attributes and f the number of attributes, in which both cases are equally zero. Then, we define

$$SMC_{00}(x, y) = \frac{\left(\sum_{i=1}^{n} I(x_i = y_j)\right) - f}{n - f}$$

- In the example from the previous slide:
 - SMC₀₀(A,B) = (998-998) / (1000-998) = 0
 - $SMC_{00}(C,D) = (990-895) / (1000-895) = 95/105 = 0.905$

Examplary Similarity Measures (III)

(for attribute-value based case representations)

Measures for Sparsely Filled Cases

- In some domains, the value "0" is dominating which should be taken into consideration by a distance / similarity measure.
- Example:
 - A case describes a customer. Each attribute describes how many times the customer has bought a specific product. There are 1000 different products, hence a case comprises 1000 attributes.
 - Customer A and B have bought one product each, but different ones.
 → Their Euclidean distance is √2.
 - Customer C and D have bought 100 different products each, 95 of them are identical.
 - → Their Euclidean distance is $\sqrt{10}$.
 - Thus, A and B are more similar than C and D.
 - → This is counterintuitive.

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Examplary Similarity Measures (IV)

(for attribute-value based case representations)

Measures for Sparsely Filled Cases

- It may be desired to consider two customers similar, even if they have bought the same products differently often.
- **Definition:** The Cosine Similarity Measure is based upon the inner product and is defined as

$$\cos(x, y) = \frac{x^T y}{\|x\| \cdot \|y\|} = \frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}}$$

- In the example we get cos(A,B)=0 and cos(C,D)=95/100=0.95.
- Pearson Correlation: Like cosine measure, but with averages of x and y subtracted, i.e. pearson(x,y)=cos(x-mean(x),y-mean(y)).

stance d_{2w} eads of $d_{2W}(x, y) = \sqrt{\sum_{i=1}^{n} w_i (x_i - y_i)^2}$ cified

Local-Global Principle

- case description by n attributes A₁,...,A_n
- each attribute has a certain type T_i (e.g. numeric)
- Local Similarity
 - a seperate similarity function is used for each attribute: sim_{i} : T_i × T_i→[0,1]
 - local measures are depending on the respective type T_i of the attribute A_i

- e.g. attribute to describe the types of CPUs

Local Similarity Measures (I)

(for unordered symbolic and integer/real-valued attribute types)

Similarity Tables

- for attributes with symbolic type $T_{\text{A}}{=}\{v_{1}, \dots, v_{k}\}$
- sim table/matrix sim_A(x,y)=s[x,y]
- example: attribute ``RAM-Type" with T.={SD.DDR.RD}

q	SD	DDR	RD
SD	1.0	0.9	0.75
DDR	0.5	1.0	0.75
RD	0.25	0.5	1.0
BAM-Type			

- reflexive similarity measure iff. diagonal elements s[k,k]=1
- symmetric similarity measure iff. s=s^T
- Machine Learning

Difference-Based Similarity Functions

- for attributes with numeric type (e.g. integer or real-valued)
- similarity is based on the numerical difference between case and query value
 - linearly scaled domains: $sim_A(x,y)=f(x-y)$
 - exponentially scaled domains: sim_A(x,y)=f(log(x)-log(y))
- · typical requirements on f
 - f:ℜ→[0,1] or f:Z→[0,1]
 - f(0)=1 (reflexivity)
 - f(x) is monotonously falling/increasing
- · examples: next slide

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

4. SIMILARITY-BASED RETRIEVAL

How to retrieve a query's nearest neighbour(s)?

Sequential Retrieval

Retrieval Task

- Input
 - case base CB={c₁,...,c_n}
 - · similarity measure sim
 - · query (new problem) q
- Output 1. most similar case c
 - or
 - 2. m most similar cases $\{c_{i_1}, \dots, c_{i_n}\}$
 - or
 - 3. all cases {c₁,...,c₁} which have at least a similarity of sim₂ to g
- Main Problem: Efficiency
- Question: How can the case base be organised in such a way to

Machine support an efficient retrieval?

- Sequential Retrieval
 - iterates over all c∈ CB and calculates sim(c,g)
 - returns the most similar / m most similar cases to q
 - complexity: O(n)
 - Advantages
 - · easy to implement
 - no index structures to maintain
 - usability of arbitrary similarity measures
 - Drawbacks
 - problematic for large case bases
 - · effort independent of query
 - · effort independent of m

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Case Retrieval with kd-Trees

- Index-Oriented Retrieval Procedures
 - preprocessing: generating an index structure
 - retrieval: exploit the index structure to efficiently access the cases
- Cture Case Base
- Possible Index Structur: kd-Tree
 - A kd-Tree is a k-dimensional binary search tree to support an efficient search over data sets.
 - Idee: partitioning of the data (here: the case base) into small intervals.
 - ordering within a binary tree (similar to a decision tree)
 - during retrieval
 - · stepping through the tree from root to the leaves
 - backtracking is possible (unlike in decision trees)

Two-Stage Retrieval

- Idea: MAC/FAC (many are called, few are chosen)
 - 1. preselection of possible solution candidates $M_{q} _ CB$, where $M_{q} = \{ \ c \in CB \ | \ fac(q,c) \ \}$
 - 2. use sequential retrieval on $M_{_{\rm Q}}$
 - → Problem: Finding of an adequate predicate fac
- · Examples for predicate fac
 - partial equality: fac(q,c) iff. q and c are identical w.r.t. at least one attribute
 - local similarity: fac(q,c) iff. q and c are sufficiently similar w.r.t. to each attribute
 - partial local similarity: fac(q,c) iff. q and c are sufficiently similar w.r.t. to at least one attribute
- Advantage: good performance $|M_{\mbox{\tiny q}}|$ if is small
- Drawbacks
 - retrieval errors may occur → α -error: A case c that is sufficiently similar to q w.r.t. sim is not found (because not considered during preselection).
 → completeness of retrieval is not guaranteed
 - determination of an adequate predicate for preselection is usually difficult

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Definition of kd-Trees

- Input
 - k ordered domains T_{1}, \ldots, T_{k} for attributes $A_{1}, \ldots A_{k}$
 - case base $CB \subseteq T_1 \times ... \times T_k$
 - parameter b (bucket size)
- **Definition:** A *kd-Tree T(CB) for case base CB* is a binary tree, that is defined as
 - if $|CB| {\leq}\, b{:}\, T(CB)$ is a leaf of the tree (called bucket), denoted CB
 - if |CB|>b: T(CB) is a tree whose
 - root is denoted with an attribute A_i and a value $v_i {\in} T_i$ and
 - two sub-trees $T_{\mbox{\tiny S}}(CB_{\mbox{\tiny S}})$ and $T_{\mbox{\tiny S}}(CB_{\mbox{\tiny S}})$ are kd-trees, too, with
 - $\ CB_{\underline{\cdot}} \coloneqq \{ \ (x_1, \ldots x_k) \in \ CB \ | \ x_j {\leq} v_j \} \text{ and }$

Properties of kd-Trees

- · kd-tree partitions the case base
 - root represents the entire case base
 - a leaf (bucket) represents a subset of the case base that does not have to be further partitioned
 - at each inner node the case base is partitioned, being divided on the basis of some specific value of an attribute
- Example:

Attribute Selection and Splitting Values

- · various methods usable for attribute selection
 - entropy-based
 - inter-quartile distance
 - choose the attribute with the biggest inter-quartile distance iqd

- · determination of splitting values
 - median splitting: choose median as splitting value
 - maximum splitting: search for the ``largest gap"

Algorithm

```
PROCEDURE CreateTree(CB): kd-Tree
if |CB|<b
then
  return leaf node marked with case base CB
else
  A<sub>i</sub> := chose_attribute(CB)
  v<sub>i</sub> := chose_split_value(CB,A<sub>i</sub>)
  return
    tree whose root is marked with A<sub>i</sub> and v<sub>i</sub>
    and which has sub-trees
    CreateTree( {(x<sub>1</sub>,...,x<sub>k</sub>) \in CB | x<sub>i</sub><=v<sub>i</sub>} )
    CreateTree( {(x<sub>1</sub>,...,x<sub>k</sub>) \in CB | x<sub>i</sub><v<sub>i</sub>} )
```

Machine Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Retrieval Algorithm Using kd-Trees

Algorithm

 simqueue is a global data structure holding the m most similar cases as well as their corresponding similarities with respect to q

if K is leaf node
then
forall c∈CB_κ do

PROCEDURE Retrieve(K: kd-Tree, q: Query)

```
if sim(q,c) > simqueue[m].sim
    then insert c into simqueue
else
  A<sub>i</sub> := the attribute K is marked with
  v_i := the splitting value K is marked with
  q_i := the attribute A_i's value of q
 if q_i \le v_i
  then
    Retrieve(K, g)
    if BOB-Test is fulfilled then Retrieve(K.)
  else
    Retrieve(K,q)
    if BOB-Test is fulfilled then Retrieve(K<sub>c</sub>)
  if BWB-Test is fulfilled
  then terminate retrieval returning simqueue
  else return
```


largest gap

BOB- and BWB-Tests

Discussion of kd-Tree Retrieval (II)

- Drawbacks
 - higher costs for building up the index structure (kd-tree)
 - restrictions implied by kd-trees
 - usability for ordered domains only
 - unknown attribute values are difficult to handle
 - · only for monotonous similarity measures that are compatible with the ordering of the respective attribute's domain
 - dimensionality of the problem is critical
 - in higher dimensions, often the similarity to very many (or even all like in linear retrieval) cases must be calculated
 - reason: in higher dimensions, there is the tendency that a query has nearly the same similarity to very many cases; thus the BOB test has to be applied more frequently
- Further Developments
 - R-Tree (Guttman et al.), R*-Tree (Kriegel et al.)

Discussion of kd-Tree Retrieval (I)

Restriction

- Retrieval using kd-trees guarantees finding the m nearest neighbours, if the similarity measure used fulfills the following condition: Compatibility with ordering and monotony: $\forall x \dots x$ and x'. x"

$$\begin{array}{rl} \text{If} & x_{i} <_{i} x_{i}^{-} <_{i} x_{i}^{-} \\ \text{then} & \text{sim}((x_{1}, \ldots, x_{n}), (x_{1}, \ldots, x_{i}^{+}, \ldots, x_{n})) \\ & \geq & \text{sim}((x_{1}, \ldots, x_{n}), (x_{1}, \ldots, x_{i}^{+}, \ldots, x_{n})) \end{array}$$

Advantages

- efficient retrieval
 - · significant savings in lower dimensions
 - due to the tree structure at least O(log.n) operations (comparisons) must be made · best case: the similarity between the guery and only one case must be calculated
- effort depends on the number m of most similar cases to find
- incremental extension of the kd-tree is possible

Machine **PAB** Learning

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010

Other Retrieval Methods

- Several further advanced retrieval approaches
 - high efficiency
 - general usability depends on problem setting (e.g. case modelling)
- Examples ٠
 - Case Retrieval Nets [Burkhardt&Lenz]
 - Retrieval with ``Fish and Shrink'' [Schaaf, 1996]
 - Case Retrieval on Top of Relational Databases Utilising SQL [Schumacher, 2000]

Dr. Thomas Gabel --- Problem Solving by Case-Based Reasoning --- 11.05.2010