What is Action Planning?

Planning Formalisms

Foundations of Al Current Approaches to Planning
15. Planning

Iterative Deepening Planning

The art and practice of thinking before Heuristic Search Planning
acting

Wolfram Burgard, Andreas Karwath,
Bernhard Nebel, and Martin Riedmiller

Summary and Outlook

2/1

What is planning? Planning tasks

Given a current state, a set of possible actions, a
specification of the goal conditions, which plan transforms the
current state into a goal state?

» Planning is the process of generating (possibly partial)
representations of future behavior prior to the use of such
plans to constrain or control that behavior:

» Planning is the art and practice of thinking before acting
[Haslum]

» The outcome is usually a set of actions, with temporal and
other constraints on them, for execution by some agent or
agents.

Another planning task: Logistics

Given a road map, and a number of trucks and airplanes, make
a plan to transport objects from their start to their goal
destinations.

Planning problem classes

Effects: deterministic, non-deterministic, probabilistic
Observability of the environment: complete, partial, not
observable
Horizon: finite, infinite
Objective: reach goal, maintain property, maximize probability
of reaching a state, maximize expected reward
Classical Planning: deterministic actions, complete
observability (in the beginning), finite horizon, reach
goal
Conditional Planning: non-deterministic actions, complete
observability, finite horizon, reach goal
Markov Decision Processes (MDP): probabilistic actions,
complete obs., maximize expected reward

Domain-independent action planning

» Start with a declarative specification of the planning
problem

» Use a domain-independent planning system to solve the
planning problem

~ Domain-independent planners are generic problem solvers
> Issues:
Good for evolving systems and those where performance is
not critical
Running time should be comparable to specialized solvers
Solution quality should be acceptable
. at least for all the problems we care about

v

v

v

v

Action planning is not . ..

» Problem solving by search, where we describe a problem
by a state space and then implement a program to search
through this space

» in action planning, we specify the problem declaratively
(using logic) and then solve it by a general planning
algorithm

» Program synthesis, where we generate programs from
specifications or examples
» in action planning we want to solve just one instance and
we have only very simple action composition (i.e.,
sequencing, perhaps conditional and iteration)
» Scheduling, where all jobs are known in advance and we
only have to fix time intervals and machines
» instead we have to find the right actions and to sequence
them

~s Of course, there is interaction with these areas!

The basic STRIPS formalism
STRIPS: STanford Research Institute Problem Solver

» S is a first-order signature and L s denotes the set of

Operators, actions & state change

» Operator:
o = (para, pre, eff),

ground atoms over the signature (also called facts or
fluents).

Y s v is the set of atoms over S using variable symbols from
the set of variables V.
A first-order STRIPS state S is a subset of ¥ s denoting a
complete theory or model (using CWA).
A planning task (or planning instance) is a 4-tuple
Mn=(S,0,l,G), where

» O is a set of operator (or action types)

» | C ¥ is the initial state
» G C X is the goal specification

No domain constraints (although present in original
formalism)

Example formalization: Logistics

Logical atoms: at(O, L), in(O, V), airconn(L1, L2),
street(L1, L2), plane(V), truck(V)
Load into truck: load
Parameter list: (O, V, L)
Precondition: at(O, L), at(V, L), truck(V)
Effects: -at(O,L),in(O, V)
Drive operation: drive
Parameter list: (V, L1,L2)
Precondition: at(V, L1), truck(V), street(L1, L2)
Effects: -at(V,L1),at(V, L2)

Some constant symbols: t1, s, ¢, p1 with truck(t1) and
street(s, C)

Action: drive(t1, s, c)

withparaC V, pre C Xsy, eff CXsyU-Xsy
(element-wise negation) and all variables in pre and eff are
listed in para.

Also: pre(0), eff(0).

efft = positive effect literals

eff~ = negative effect literals

Operator instance or action: Operator with empty
parameter list (instantiated schema)

State change induced by action:

Su efft (o) — —eff (o) if pre(o) C S &
App(S,0) = eff(o) is cons.
undefined otherwise
Plans & successful executions
» A plan A is a sequence of actions
» State resulting from executing a plan:
Res(S,{)) = S
Res(App(S. 0),A) if App(S,0)
Res(S,(0;A)) = is defined
undefined otherwise

Plan A is successful or solves a planning task if
Res(l, A) is defined and G C Res(l, A).

A small Logistics example

- . o _ J at(p1,c),at(p2,s),at(t1,c),
Initial state: S = {at(t2,c),street(c,s),street(s, c)

Goal: G = { at(p1,s),at(p2,c) }

Successful plan: A = (load(p1,t1,c), drive(t1,c,s),
unload(p1,t1,s), load(p2,t1, s),
drive(t1, s, c), unload(p2,t1, c))

Other successful plans are, of course, possible

Beyond STRIPS

Even when keeping all the restrictions of classical planning, one
can think of a number of extensions of the planning language.

» General logical formulas as preconditions: Allow all
Boolean connectors and quantification

» Conditional effects: Effects that happen only if some
additional conditions are true. For example, when pressing
the accelerator pedal, the effects depends on which gear
has been selected (no, reverse, forward).

» Multi-valued state variables: Instead of 2-valued Boolean
variables, multi-valued variables could be used

Simplifications: DATALOG- and
propositional STRIPS

» STRIPS as described above allows for unrestricted
first-order terms, i.e., arbitrarily nested function terms

~ Infinite state space

» Simplification: No function terms (only 0-ary = constants)
DATALOG-STRIPS
» Simplification: No variables in operators (= actions)
Propositional STRIPS

used in planning algorithms nowadays (but specification is
done using DATALOG-STRIPS)

¢

¢

PDDL: The planning domain description language

» Since 1998, there exists a bi-annual scientific competition
for action planning systems.

» In order to have a common language for this competition,
PDDL has been created (originally by Drew McDermott)

» Meanwhile, version 3.1 (IPC-2008) with most of the
features mentioned.

» Sort of standard language by now.
» We will stick to STRIPS here.

Current Approaches to Planning

>

In 1992, Kautz and Selman introduced planning as
satisfiability

Encode possible k-step plans as Boolean formulas and
use an iterative deepening search

In 1995, Blum and Furst introduced planning graphs
iterative deepening approach that prunes the search space
using a graph-structure

In 1996, McDermott proposed to use (again) an heuristic
estimator to control the selection of actions, similar to
GPS

Geffner (1997) followed up with a propositional, simplified
version (HSP) and Hoffmann & Nebel (2001) with an
extended version integrating strong pruning. (FF)

Even better system is FD by Helmert

Heuristic planners seem to be the most efficient
sub-optimal planners these days

Planning as Satisfiability

>

%

Take the dual perspective: Consider all models satisfying a
particular formula as plans

Similar to what is done in the generic reduction that shows
NP-hardness of SAT (simulation of a computation on a
Turing machine)

Build formula for k steps, check satisfiability, and
increase k until a satisfying assignment is found

Use time-indexed propositional atoms for facts and action
occurrences

Formulate constraints that describe what it means that a
plan is successfully executed:
» Only one action per step
» If an action is executed then their preconditions were true
and the effects become true after the execution
» If a fact is not affected by an action, it does not change its
value (frame axiom)

lterative Deepening Search

1. Initialize k =0

2. Try to construct a plan of length k exhaustively
3. If unsuccessful, increment k and goto step 2.
4. Otherwise return plan

~ Finds shortest plan

~ Needs to prove that there are no plans of length
1,2,...k — 1 before a plan of length k is produced.

Planning as Satisfiability: Example

» Fact atoms:
at(p1,s);, at(p1, c);, at(t1, s);, at(t1, c);, in(p1,t1);
» Action atoms:
move(t1, s, c);, move(t1,c, s);, load(p1,s);, ...
» Initial state: at(p1, ¢)1, at(p2, s)1, at(t1, c);
» Only one action per step:
Nixy ~(unload(t1, p1, x); A load(p1, t1,y)i) A ...
» Preconditions: A, ,(unload(p1, t1,x); — in(p1,t1);—1) A ...
» Effects:
Nix(unload(p1,t1, x); — —in(p1, t1); A at(p1,x);) A ...
» Frame axioms:
/\,’X’yﬁz(ﬁmove(ﬂ X, ¥)i — (at(t1,2)i1 < at(t1,2);)) A ...
~ A satisfying truth assignment corresponds to a plan (use
the true action atoms)

Advantages of the Approach

v

Flexible search strategy

Can make use of SAT solver technology

...and automatically profits from advances in this area
Can express constraints on intermediate states

Can use logical axioms to express additional constraints,
e.g., to prune the search space

v

v

v

v

Example Graph
» 1= {at(pl1,c), at(p2, s), at(t1,c)}, G = {at(p1,s),in(p2, t1)}

Fo

Planning Based on Planning Graphs

Main ideas:
» Describe possible developments in a graph structure (use
only positive effects)
» Layered graph structure with fact and action levels
» Fact level (F level): positive atoms (the first level being the
initial state)
» Action level (A level): actions that can be applied using
the atoms in the previous fact level
» Links: precondition and effect links between the two layers
» Record conflicts caused by negative effects and
propagate them

» Extract a plan by choosing only non-conflicting parts of
the graph (allowing for parallel actions)

~ Parallelism (for non-conflicting actions) is a great boost for
the efficiency.

Example Graph

» 1 ={at(p1,¢), at(p2,s), at(t1,c)}, G = {at(p1,s),in(p2, 1)}
» All applicable actions are included

at(pl,c): | in(p1,t1) at(p2,s) at(tl,c) F1
load drive(...) Al

Example Graph Example Graph

» 1 ={at(p1,c),at(p2,s),at(t1,c)}, G = {at(pl1,s),in(p2,t1)} I = {at(p1,c), at(p2,s), at(t1,c)}, G = {at(p1,s),in(p2,t1)}
» All applicable actions are included All applicable actions are included

v

v

» In order to propagate unchanged properties, use noop action, » In order to propagate unchanged properties, use noop action,
denoted by * denoted by *
» Expand graph
[atpLe)| [in,11)] [at(pls) | [atp2.s)] [inp2t1) | [attle)] [anils)] F2
T){% % load £ drive drive = A2
% W % F1 [attp1.e)) [infp11)] [ar(p2.5)| at(tlc) mm;) F1

load % dme(.) Al load % drne(.) Al

Example Graph Plan Extraction

» | ={at(p1,c), at(p2,s), at(t1,c)},
G = {at(p1,s),in(p2, t1)}

> All applicable actions are included . . » Start at last fact level with goal atoms

» In order to propagate unchanged properties, use noop action, L o .
denoted by * » Select a minimal set of non-conflicting actions that

» Expand graph as long as not all goal atoms are in the fact level ge:]e;;:)e;:ti)r?s::eaan;‘slicting i they have complementary

|ut(pl,c)‘ lin(p1,f1)‘ la!(pl,s)l ‘ut(p?,s)‘ lin{p?,”)‘ lu!(p?,c)‘ ‘ut(t],c)‘ lal(rl,s)‘ F3 effeCtS or |f one aCtIOﬂ de|eteS or aSSGI’tS a preCOﬂdIthﬂ Of
SN the other action

drive drive % A3
» Use the preconditions of the selected actions as
(sub-)goals on the next lower fact level

unload __x _ lgad { diive drve ¥ A2 » Backtrack if no non-conflicting choice is possible

+ load

s« unload * # load unload #

[attp1.0)] [inp1.t1)) [ar(pLs)| [at(p2.s)| [inp2t1)|

% load

F1 » If all possibilities are exhausted, the graph has to be
, ! W() extended by another level.

% Lat(p2.s)] la(tl,c)] Fo

Extracting From the Example Graph Extracting From the Example Graph

Start with goals at highest fact level Select minimal set of actions & corresponding subgoals
|at(p1,c)‘ lin(p1,!1)‘ Iat(p],s)l |at(p2,:)| in(p2,t1) ‘at(pZ,c)‘ |at(t1,c)| ‘at(t],s)‘ F3 at(pl,c)| | in(p1,t1) Iar(pl s)I ‘at(pZ s)‘ in(p2,t1) ‘at(pZ c)| ‘at(t] c)‘ ‘at(tl s)‘ F3

AT L ISON T AT AL ISEN

ad unload * drive drive % A3 load unloa inload % drive drive * A3

y{ad w unload # # lo
lat(pL,c)| [inp1,t1)] [at(pLs)| [ar(p2,s)] [inp2.t1)] a(tl,c)| [anils)| F2

) F2
* % load unload # load ¥ drive drive % A2 * % load unload # load % drive drive % A2
fatric) (o)) [aos) Fr anpzc i Fr

* load * * drive Al * load dnve Al

Fo %W Fo

Extracting From the Example Graph Extracting From the Example Graph

Wrong choice leading to conflicting actions Other choice, but no further selection possible
|at(p1,c)‘ lin(p1,!1)‘ Iat(p],s)l |at(p2,:)| in(p2,t1) ‘at(pZ,c)‘ |at(t1,c)| ‘at(t],s)‘ F3 }at(p],c) ‘in{pl,”)‘ IaI(pI,s)l ‘at{pZ,x)‘ Iin(p.?,”)l lat(pZ,c)| ‘al(r];c)>H<ar£r1.s)‘ F3
‘ N

drive drive #

% load unload * * loa unload % drive drive % A3 * % load . unload

—

Tm(] o)

|at(p1,c)‘ in(p1,t1)} B s in(p2, i s F2 at(p] c) lat(p] s)| ‘In(pZ ")I

% load unload load £ drive drive % A2 * % load unloud load drive drive * A2
Tt |m(pzs| F1 mt(pz 5 %mu la_%r(pzs) [att.c) c F1
load drne Al * load drive At

s 7\Am\‘\ ‘/.
at(p] c) at(p2 s at(l,‘l c) Fo lat(pl,c) at(tl,c) Fo

Extracting From the Example Graph

Final selection

‘at(pl,c)‘ [in(p1,t1)‘ Iul(pl,:)l HI(pZ,S)I in(p2,t1) ‘at(p‘Z,c)‘ \‘at(tl,c)l ‘at(ll,x)‘ F3

IR VA e

% load y unload * + load unload * drive drive * A3
-

‘at(pl,c)] in(p1,t1)) [at(pl,:)‘ F2
LT
* + load lgllﬁ?é load* drive drive x A2
T N
————
at(pl,c)| [in(p1,t7) F1
load * * drive Al
Fo

Disadvantages of lterative Deepening Planners

» If a domain contains many symmetries, proving that there
is no plan up to length of kK — 1 can be very costly.
» Example: Gripper domain:
» there is one robot with two grippers
» there is room A that contains n balls
» there is another room B connected to room A
» the goal is to bring all balls to room B
» Obviously, the plan must have a length of at least n/2, but
ID planners will try out all permutations of actions for
shorter plans before noting this.

~ Give better guidance

Propagation of Conflict Information: Mutex pairs

Idea: Try to identify as many pairs of conflicting choices as
possible in order to prune the search space

» Any pair of conflicting actions is mutex (mutually exclusive)

» A pair of atoms is mutex at F-level i > 0 if all ways of
making them true involve actions that are mutex at the
A-level i

» A pair of actions is also mutex if their preconditions are

— Actions that are mutex cannot be executed at the same
time

— Facts that are mutex cannot be both made true at the
same time

~ Never choose mutex pairs during plan extraction

Plan graph search and mutex propagation make planning
1-2 orders of magnitude more efficient than conventional
methods

Heuristic Search Planning

» Use an heuristic estimator in order to select the next
action or state
» Depending on the search scheme and the heuristic, the
plan might not be the shortest one
— Itis often easier to go for sub-optimal solutions (remember
Logistics)

= =]

Heuristic search planner vs. iterative deepening on Gripper

Deriving Heuristics: Relaxations

» General principle for deriving heuristics:

» Define a simplification (relaxation) of the problem and
take the difficulty of a solution for the simplified problem as
an heuristic estimator

» Example: straight-line distance on a map to estimate the
travel distance

» Example: decomposition of a problem, where the
components are solved ignoring the interactions between
the components, which may incur additional costs

» In planning, one possibility is to ignore negative effects

Monotonic Planning

Assume that all effects are positive
» finding some plan is easy:

» lteratively, execute all actions that are executable and have
not all their effects made true yet

» If no action can be executed anymore, check whether the
goal is satisfied

» If not, there is no plan

» Otherwise, we have a plan containing each action only once

» Finding the shortest plan: easy or difficult?
— NP-hard
~ Consider approximations to h*.

Ilgnoring Negative Effects: Example

» In Logistics: The negative effects in load and drive are
ignored:
» Simplified load operation: load(O, V, P)
Precondition: at(O, P), at(V, P), truck(V)
Effects: —at{o;+,in(0, V)
~ After loading, the package is still at the place and also
inside the truck
» Simplified drive operation: drive(V, P1, P2)
Precondition: at(V, P1), truck(V), street(P1, P2)
Effects: —attVF1), at(V, P2)

» After driving, the truck is in two places!
— We want the length of the shortest relaxed plan ~ h*(s)
~~ How difficult is monotonic planning?

The FF Heuristic

» Use the planning graph method to construct a plan for the
monotone planning problem

» Can be done in poly. time (and is empirically very fast)

» Generates an optimal parallel plan that might not be the
best sequential plan
— The number of actions in this plan is used as the heuristic
estimate (more informative than the parallel plan length,
but not admissible)

~ Appears to be a good approximation

The FF System

H

FF (Fast Forward) is a heuristic search planner
developed in Freiburg

Heuristic: Goal distances are estimated by solving a
relaxation of the task in every search state (ignoring
negative effects) — the solution is not minimal, however!

Search strategy: Enforced hill-climbing

Pruning: Only a fraction of each states successors are
considered: only thosesuccessors that would be generated
by the relaxed solution — with a fall-back strategy
considering all successors if we are unsuccessful

FF used to be one of the fastest planners around

Meanwhile, there is FD, which contains more domain
analysis and which is faster because of this

Solution Quality: Logistics in the 2000 competition

#steps

550 T
FF
HSP2 ----
500 System-R .
GRT
450 o
400 b
350 [1
300 +) 4
250 | e A
200 | g S ’Iy'\v,’ \ o \ -

150 |) NN]

100 P YAY ~ VY .

50 S — N TS S R ST T N

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
problem size

sec.

Runtime: Logistics in the 2000 competition

10000 T
FF
HSP2 ----
Siihan

Syste
GRT

1000 5

100 | -

0.1 o A — M-, S S ST . T T .

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
problem size

Summary and Outlook

Planning generates representation of future behavior

Classical planning assumes full observability and
deterministic actions

Compared with MDPs, one can deal with much larger state
spaces

» Current algorithmic approaches are

» planning as satisfiability

» planning graphs

» heuristic search planning, which seems to be the most
promosing approach for satisficing planning

» Many possible extensions ...
» Applications in robotic, video games, ...
~+ Come to the Foundations of Al group, if you are interested

in pursuing research in this area

