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Clustering (1)

e Common technique for statistical data analysis
(machine learning, data mining, pattern
recognition, ...)

e Classification of a data set into subsets (clusters)

e Ideally, data in each subset have a similar
characteristics (proximity according to distance
function)
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Clustering (2)

e Needed: distance (similarity / dissimilarity)
function, e.g., Euclidian distance

e Clustering quality
— Inter-clusters distance maximized
— Intra-clusters distance minimized

e The quality depends on
— Clustering algorithm
— Distance function
— The application (data)
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Types of Clustering

e Hierarchical Clustering
- Agglomerative Clustering (buttom up)
— Divisive Clustering (top-down)

e Partitional Clustering
— K-Means Clustering (hard & soft)

— Gaussian Mixture Models (EM-based)
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K-Means Clustering

e Partitions the data into k clusters (k is to be
specified by the user)

e Find k reference vectors m;, j =1,...,k which best
explain the data X

e Assign data vectors to nearest (most similar)
reference m;

pé —m| = minfx’ —m;|
J

r-dimensional data vector reference vector
in a real-valued space (center of cluster = mean)
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Reconstruction Error
(K-Means as Compression Alg.)

e The total reconstruction error is defined as

E({m: | \X): > 3 b x —m |

1 if [x* —m, | =min|
J

with

Xt—m-H
bf = < .

O otherwise

e Find reference vectors which minimize the error

e Taking its derivative with respect to m, and setting
it to O leads to bix'
o

b

t

m
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K-Means Algorithm

Initialize m;,i=1,...,k, for example, to k£ random x!
Repeat
For all &t e X

o 1 if ||&" — m;|| = min; ||’ — m,]||
' 0 otherwise

Y

For all m;.,:=1,...,

™m; *~—Z Z}fccf/z b

Until m,; converge

Recompute the cluster Assign each x* to
centers m, using current the closest cluster
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K-Means

k-means: Initial
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Strength of K-Means

Easy to understand and to implement

Efficient O(nkt)
n = #iterations, k = #clusters, t = #data
points

Converges to a local optimum (global
optimum is hard to find)

Most popular clustering algorithm
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Weaknesses of K-Means

e User needs to specify #clusters (k)

e Sensitive to initialization (strategy: use
different seeds)

e Sensitive to outliers since all data points
contribute equally to the mean
(strategy: try to eliminate outliers)
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An example

Iteration 1: (B). Cluster assignment (C). Re-compute centroids
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An example (cont ...)

Iteration 3: (F). Cluster assignment
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(E). Re-Compute centeroids

(G). Re-Compute centeroids
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Weaknesses of k-means:
Problems with outliers

" % outliers
x *‘k * o\ *
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(B): Ideal clusters
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Soft Assignments

e So far, each data point was assigned to
exactly one cluster

e A variant called soft k-means allows for
making fuzzy assignments

e Data points are assigned to clusters with
certain probabilities
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Soft K-Means Clustering

Each data point is given a soft assignment
to all means
___exp(=B |zt —my|?) _
th = 5 exp(— 5[l —my[[7)" <k th = 1
S is a “stiffness” parameter and plays a
crucial role

Zt Cth

t Ctk

Means are updated mj =

Repeat assignment and update step until
assignments do not change anymore
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Soft K-Means Clustering

Points between clusters get assigned to
poth of them

Points near the cluster boundaries play a
partial role in several clusters

Additional parameter g

Clusters with varying shapes can be treated
in @ probabilistic framework (mixtures of
Gaussians)
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After Clustering

e Allows knowledge extraction through
number of clusters (if adaptive),

cluster parameters, i.e., center, range of
features.
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Clustering as Preprocessing

e Estimated group labels h; (soft) or b; (hard)
may be seen as the dimensions of a new k
dimensional space, where we can then learn
our discriminant or regressor.

e Local representation (only one b; is 1, all
others are 0; only few h; are nonzero) vs

distributed representation
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Examples of Clustering
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Examples of Clustering

Original 16 Colors
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Summary

K-Means is the most popular clustering
algorithm

It is efficient and easy to implement
Converges to a local optimum

A variant of hard k-means exists allowing soft
assignments

Soft k-means corresponds to the EM algorithm
which is a general optimization procedure
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