Foundations of AI 10. Machine Learning Revisted

Unsupervised Learning

Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Clustering (1)

- Common technique for statistical data analysis (machine learning, data mining, pattern recognition, ...)
- Classification of a data set into subsets (clusters)
- Ideally, data in each subset have a similar characteristics (proximity according to distance function)

Clustering (2)

- Needed: distance (similarity / dissimilarity) function, e.g., Euclidian distance
- Clustering quality
 - Inter-clusters distance maximized
 - Intra-clusters distance minimized
- The quality depends on
 - Clustering algorithm
 - Distance function
 - The application (data)

Types of Clustering

- Hierarchical Clustering
 - Agglomerative Clustering (buttom up)
 - Divisive Clustering (top-down)

- Partitional Clustering
 - K-Means Clustering (hard & soft)
 - Gaussian Mixture Models (EM-based)

K-Means Clustering

- Partitions the data into k clusters (k is to be specified by the user)
- Find k reference vectors m_j, j =1,...,k which best explain the data X
- Assign data vectors to nearest (most similar) reference *m_i*

$$\|\mathbf{x}^t - \mathbf{m}_i\| = \min_j \|\mathbf{x}^t - \mathbf{m}_j\|$$

r-dimensional data vector in a real-valued space

reference vector (center of cluster = mean)

Reconstruction Error (K-Means as Compression Alg.)

• The total reconstruction error is defined as

with

$$E\left(\left\{\mathbf{m}_{i}\right\}_{i=1}^{k} | \mathbf{X}\right) = \sum_{t} \sum_{i} b_{i}^{t} \left\|\mathbf{x}^{t} - \mathbf{m}_{i}\right\|^{2}$$

$$b_{i}^{t} = \begin{cases} 1 & \text{if } \left\|\mathbf{x}^{t} - \mathbf{m}_{i}\right\| = \min_{j} \left\|\mathbf{x}^{t} - \mathbf{m}_{j}\right\| \\ 0 & \text{otherwise} \end{cases}$$

- Find reference vectors which minimize the error
- Taking its derivative with respect to m_i and setting it to 0 leads to $\sum b^t x^t$

$$\mathbf{m}_{i} = \frac{\sum_{t} b_{i}^{t} \mathbf{m}_{t}}{\sum_{t} b_{i}^{t}}$$

K-Means Algorithm

Initialize $\boldsymbol{m}_i, i = 1, \dots, k$, for example, to k random \boldsymbol{x}^t Repeat For all $oldsymbol{x}^t \in \mathcal{X}$ $b_i^t \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$ For all $\boldsymbol{m}_i, i = 1, \ldots, k$ $oldsymbol{m}_i \leftarrow \sum_t b_i^t oldsymbol{x}^t / \sum_t b_i^t$ Until m_i converge

Recompute the cluster centers m_i using current cluster membership

Assign each \mathbf{x}^t to the closest cluster

K-Means Example

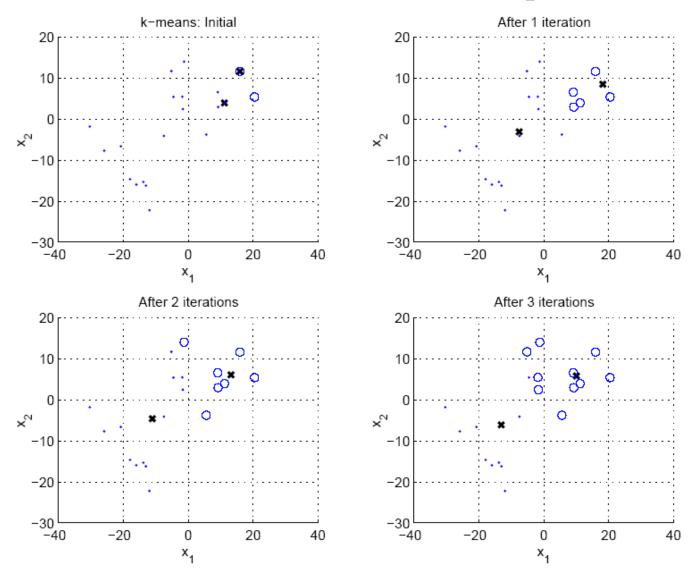


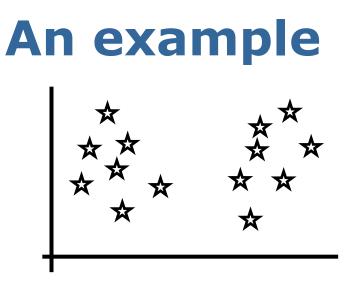
Image source: Alpaydin, Introduction to Machine Learning 10/7

Strength of K-Means

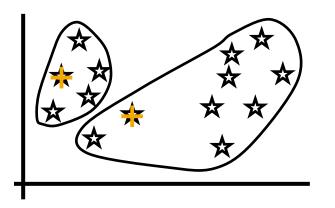
- Easy to understand and to implement
- Efficient O(nkt)
 n = #iterations, k = #clusters, t = #data
 points
- Converges to a local optimum (global optimum is hard to find)
- Most popular clustering algorithm

Weaknesses of K-Means

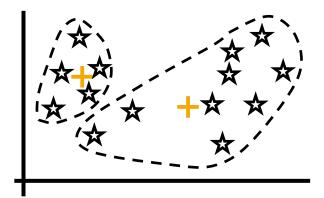
- User needs to specify #clusters (k)
- Sensitive to initialization (strategy: use different seeds)
- Sensitive to outliers since all data points contribute equally to the mean (strategy: try to eliminate outliers)



(A). Random selection of k centers



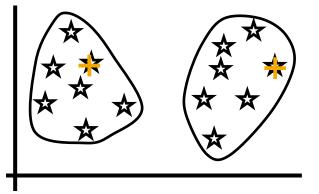
Iteration 1: (B). Cluster assignment



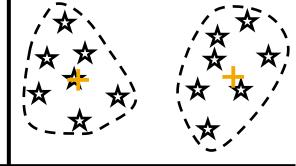
(C). Re-compute centroids

An example (cont ...)

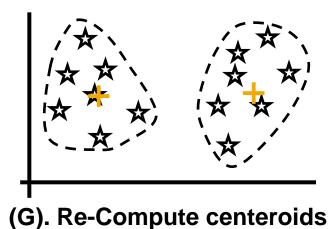
Iteration 2: (D). Cluster assignment



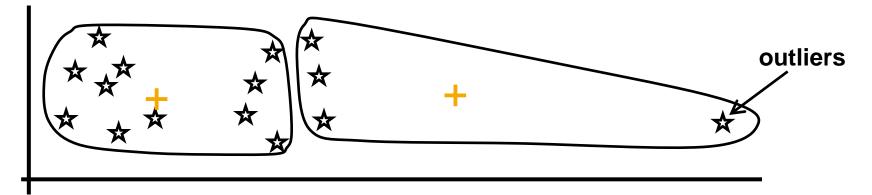
Iteration 3: (F). Cluster assignment



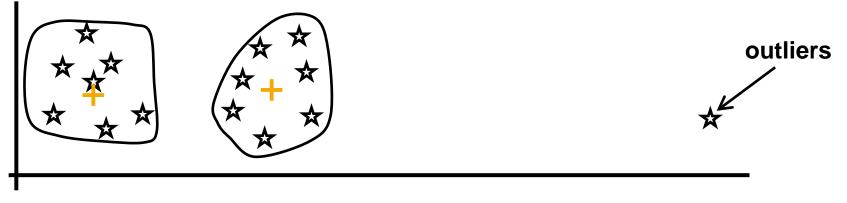
(E). Re-Compute centeroids



Weaknesses of k-means: Problems with outliers



(A): Undesirable clusters



(B): Ideal clusters

Soft Assignments

- So far, each data point was assigned to exactly one cluster
- A variant called soft k-means allows for making fuzzy assignments
- Data points are assigned to clusters with certain probabilities

Soft K-Means Clustering

 Each data point is given a soft assignment to all means

$$c_{tk} = \frac{\exp(-\beta ||x^t - m_k||^2)}{\sum_i \exp(-\beta ||x^t - m_i||^2)}, \ \sum_k c_{tk} = 1$$

- β is a "stiffness" parameter and plays a crucial role
- Means are updated $m_k = \frac{\sum_t c_{tk} x^t}{\sum_t c_{tk}}$

 Repeat assignment and update step until assignments do not change anymore

Soft K-Means Clustering

- Points between clusters get assigned to both of them
- Points near the cluster boundaries play a partial role in several clusters
- Additional parameter β
- Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians)

After Clustering

 Allows knowledge extraction through number of clusters (if adaptive), cluster parameters, i.e., center, range of features.

Clustering as Preprocessing

- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs distributed representation

Examples of Clustering

Original

16 Colors

Examples of Clustering

Original

16 Colors

Summary

- K-Means is the most popular clustering algorithm
- It is efficient and easy to implement
- Converges to a local optimum
- A variant of hard k-means exists allowing soft assignments
- Soft k-means corresponds to the EM algorithm which is a general optimization procedure