Foundations of AI 10. Machine Learning Revisted

Unsupervised Learning

Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Clustering (2)

- Needed: distance (similarity / dissimilarity) function, e.g., Euclidian distance
- Clustering quality
 - Inter-clusters distance maximized
 - Intra-clusters distance minimized
- The quality depends on
 - Clustering algorithm
 - Distance function
 - The application (data)

Clustering (1)

- Common technique for statistical data analysis (machine learning, data mining, pattern recognition, ...)
- Classification of a data set into subsets (clusters)
- Ideally, data in each subset have a similar characteristics (proximity according to distance function)

10/1

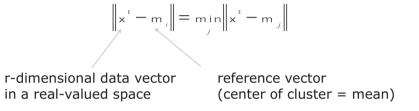
Types of Clustering

- Hierarchical Clustering
 - Agglomerative Clustering (buttom up)
 - Divisive Clustering (top-down)
- Partitional Clustering
 - K-Means Clustering (hard & soft)
 - Gaussian Mixture Models (EM-based)

10/2

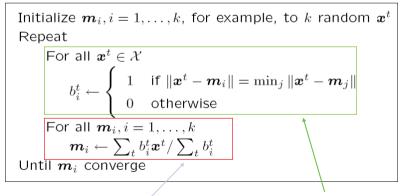
K-Means Clustering

- Partitions the data into *k* clusters (k is to be specified by the user)
- Find k reference vectors \mathbf{m}_j , j = 1,...,k which best explain the data \mathbf{X}
- Assign data vectors to nearest (most similar) reference m_i



10/4

K-Means Algorithm



Recompute the cluster centers \mathbf{m}_i using current cluster membership

Assign each x^t to the closest cluster

Reconstruction Error

(K-Means as Compression Alg.)

• The total reconstruction error is defined as

with
$$\mathcal{E}\left(\left\{\mathbf{m}_{i}\right\}_{i=1}^{k}\left|X\right\rangle = \sum_{i}\sum_{j}b_{i}^{t}\left\|\mathbf{x}^{t}-\mathbf{m}_{j}\right\|^{2}$$

$$b_{i}^{t} = \begin{cases}
1 & \text{if } \left\|\mathbf{x}^{t}-\mathbf{m}_{j}\right\| = \min_{j}\left\|\mathbf{x}^{t}-\mathbf{m}_{j}\right\| \\
0 & \text{otherwise}
\end{cases}$$

- Find reference vectors which minimize the error
- Taking its derivative with respect to m_i and setting it to 0 leads to $\sum_{b^c \mathbf{X}^c}$

$$\mathbf{m}_{i} = \frac{\sum_{t}^{t} b_{i}^{t}}{\sum_{t}^{t} b_{i}^{t}}$$

10/5

K-Means Example

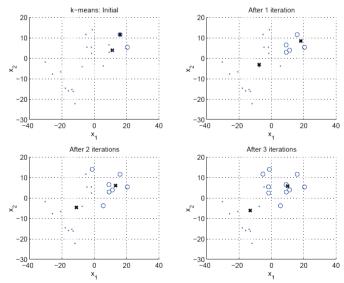


Image source: Alpaydin, Introduction to Machine Learning 10/7

Strength of K-Means

- Easy to understand and to implement
- Efficient O(nkt) n = #iterations, k = #clusters, t = #data points
- Converges to a local optimum (global optimum is hard to find)
- Most popular clustering algorithm

Weaknesses of K-Means

- User needs to specify #clusters (k)
- Sensitive to initialization (strategy: use different seeds)
- Sensitive to outliers since all data points contribute equally to the mean (strategy: try to eliminate outliers)

10/8 10/9

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

An example (cont ...)

Iteration 2: (D). Cluster assignment

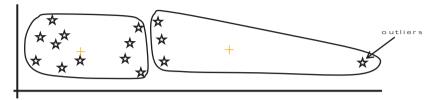
(E). Re-Compute centeroids

Iteration 3: (F). Cluster assignment

(G). Re-Compute centeroids

10/10 10/11

Weaknesses of k-means: Problems with outliers



(A): Undesirable clusters

10/ 12

Soft Assignments

- So far, each data point was assigned to exactly one cluster
- A variant called soft k-means allows for making fuzzy assignments
- Data points are assigned to clusters with certain probabilities

10/13

Soft K-Means Clustering

 Each data point is given a soft assignment to all means

$$c_{tk} = \frac{\exp(-\beta ||x^t - m_k||^2)}{\sum_i \exp(-\beta ||x^t - m_i||^2)}, \ \sum_k c_{tk} = 1$$

- β is a "stiffness" parameter and plays a crucial role
- \bullet Means are updated $m_k = \frac{\sum_t c_{tk} x^t}{\sum_t c_{tk}}$
- Repeat assignment and update step until assignments do not change anymore

Soft K-Means Clustering

- Points between clusters get assigned to both of them
- Points near the cluster boundaries play a partial role in several clusters
- Additional parameter β
- Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians)

10/ 14

After Clustering

 Allows knowledge extraction through number of clusters (if adaptive), cluster parameters, i.e., center, range of features.

Clustering as Preprocessing

- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs distributed representation

10/ 16

Examples of Clustering

16 Colors

Original

Examples of Clustering

16 Colors

Original

10/ 18

Summary

- K-Means is the most popular clustering algorithm
- It is efficient and easy to implement
- Converges to a local optimum
- A variant of hard k-means exists allowing soft assignments
- Soft k-means corresponds to the EM algorithm which is a general optimization procedure