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Bayesian Learning and Why Learning Works
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Statistical Learning Methods

 In MDPs probability and utility theory allow 
agents to deal with uncertainty.

 To apply these techniques, however, the 
agents must first learn their probabilistic 
theories of the world from experience.

 We will discuss statistical learning methods as 
robust ways to learn probabilistic models.
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An Example for Statistical Learning

 The key concepts are data (evidence) and 
hypotheses. 

 A candy manufacturer sells five kinds of bags 
that are indistinguishable from the outside:

h1: 100% cherry

h2: 75% cherry and 25% lime

h3: 50% cherry and 50% lime

h4: 25% cherry and 75% lime

h5: 100% lime

 Given a sequence d1, …, dN of candies 
observed, what is the most likely flavor of the 
next piece of candy?
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Bayesian Learning

 Calculates the probability of each hypothesis, 
given the data.

 It then makes predictions using all hypotheses 
weighted by their probabilities (instead of a 
single best hypothesis).

 Learning is reduced to probabilistic inference.
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Application of Bayes Rule

 Let D represent all the data with observed value
d.

 The probability of each hypothesis is obtained by 
Bayes rule:

 The manufacturer tells us that the prior 
distribution over h1, …, h5 is given by 
<.1, .2, .4, .2, .1>

 We compute the likelihood of the data under the 
assumption that the observations are 
independently and identically distributed (i.i.d.): 
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How to Make Predictions?

 Suppose we want to make predictions about 
an unknown quantity X given the data d.

 Predictions are weighted averages over the 
predictions of the individual hypotheses.

 The key quantities are the hypothesis prior
P(hi) and the likelihood P(d|hi) of the data under 

each hypothesis.



9/8

Example

 Suppose the bag is an all-lime bag (h5)

 The first 10 candies are all lime.

 Then P(d|h3) is 0.510 because half the candies in an h3 bag 

are lime.

 Evolution of the five hypotheses given 10 lime candies 
were observed (the values start at the prior!).
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Observations

 The true hypothesis often dominates the 
Bayesian prediction.

 For any fixed prior that does not rule out the 
true hypothesis, the posterior of any false 
hypothesis will eventually vanish.

 The Bayesian prediction is optimal and, given 
the hypothesis prior, any other prediction will 
be correct less often.

 It comes at a price that the hypothesis space
can be very large or infinite.
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Maximum a Posteriori (MAP)

 A common approximation is to make predictions 
based on a single most probable hypothesis.

 The maximum a posteriori (MAP) hypothesis is the 
one that maximizes P(hi|d).

 In the candy example, hMAP = h5 after three lime 
candies in a row.

 The MAP  learner the predicts that the fourth candy 
is lime with probability 1.0, whereas the Bayesian 
prediction is still 0.8.

 As more data arrive, MAP and Bayesian predictions 
become closer.

 Finding MAP hypotheses is often much easier than 
Bayesian learning.

   
P( X | d)  P( X | h

MAP
)
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Maximum-Likelihood Hypothesis (ML)

 A final simplification is to assume a uniform 
prior over the hypothesis space.

 In that case MAP-learning reduces to choosing 
the hypothesis that maximizes P(d|hi).

 This hypothesis is called the maximum-
likelihood hypothesis (ML).

 ML-learning is a good approximation to MAP 
learning and Bayesian learning when there is a 
uniform prior and when the data set is large.
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Why Learning Works
How can we decide that h is close to f when f is 

unknown?
 Probably approximately correct

Idea: Any wrong hypothesis  will be found out after a 
reasonable number of examples, since it makes a 
wrong prediction.

Add: “with high probability” 

Stationarity as the basic assumption of PAC-Learning: 
training and test sets are selected from the same 
population of examples with the same probability 
distribution.
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Some Notation

Key question: how many examples do we need?

X Set of examples
D Distribution from which the examples are drawn
H Hypothesis space (f  H)
m Number of examples in the training set
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PAC-Learning

A hypothesis h is approximately correct if                  .

To show: After the training period with m examples, with 

high probability, all consistent hypotheses are 
approximately correct.

How high is the probability that a wrong hypothesis hb

Hbad is consistent with the first m examples?
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Sample Complexity

Assumption:                

P(hb is consistent with 1 example)

P(hb is consistent with N examples)

P(Hbad contains a consistent h)

Since |Hbad |  |H|

P(Hbad contains a consistent h)

We want to limit this probability by some small number :

Since                   , we derive

Sample Complexity: Number of required examples, as a 
function of and  .
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Sample Complexity (2)

Example: Boolean functions

The number of Boolean functions over n attributes is 
|H| = 22n

.

The sample complexity therefore grows as 2
n
.

Since the number of possible examples is also 2
n
, any 

learning algorithm for the space of all Boolean 
functions will do no better than a lookup table, if it 
merely returns a hypothesis that is consistent with all 
known examples.
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PAC-Learnable

Definition: Consider a concept class F over a set of 
instances X and a Learner using hypothesis space H. F 
is PAC-learnable by L using H, if for all f in F, 
distributions D over X, ε and δ, learner L will with 
probability at least (1- δ) output a hypothesis h in H 
such that error_D(h) ≤ ε, in time that is polynomial in 
(1\ε), (1\δ), n, and size(h).

From T. Mitchell, Machine Learning
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Learning from Decision Lists

In comparison to decision trees:

• The overall structure is simpler

• The individual tests are more complex

This represents the hypothesis

If we allow tests of arbitrary size, then any Boolean function can 
be represented.

k-DL: Language with tests of length  k.

Note: k-DL includes decision trees of depth at most k.
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Learnability of k-DL

(Yes,No,no-Test,all permutations)

(Combination without repeating pos/neg attributes)

(with Euler’s summation formula)
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Summary 
(Statistical Learning Methods)

 Bayesian learning techniques formulate 
learning as a form of probabilistic inference.

 Maximum a posteriori (MAP) learning selects 
the most likely hypothesis given the data.

 Maximum likelihood learning selects the 
hypothesis that maximizes the likelihood of 
the data. 
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Summary
(Statistical Learning Theory)

 Decision trees learn deterministic Boolean 
functions.

 PAC learning deals with the complexity of 
learning.

 Decision lists as functions that are easy to 
learn.

Inductive learning as learning the representation 
of a function from example input/output pairs.


