Foundations of AI

9. Statistical Machine Learning

Bayesian Learning and Why Learning Works Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Statistical Learning Methods

- In MDPs probability and utility theory allow agents to deal with uncertainty.
- To apply these techniques, however, the agents must first learn their probabilistic theories of the world from experience.
- We will discuss statistical learning methods as robust ways to learn probabilistic models.

Contents

- Statistical learning
- Why learning works

An Example for Statistical Learning

- The key concepts are data (evidence) and hypotheses.
- A candy manufacturer sells five kinds of bags that are indistinguishable from the outside:
 - h₁: 100% cherry
 - h₂: 75% cherry and 25% lime
 - h₃: 50% cherry and 50% lime
 - h₄: 25% cherry and 75% lime
 - h₅: 100% lime
- Given a sequence d₁, ..., d_N of candies observed, what is the most likely flavor of the next piece of candy?

Bayesian Learning

- Calculates the probability of each hypothesis, given the data.
- It then makes predictions using all hypotheses weighted by their probabilities (instead of a single best hypothesis).
- Learning is reduced to probabilistic inference.

9/5

How to Make Predictions?

 Suppose we want to make predictions about an unknown quantity X given the data d.

$$P(X | \mathbf{d}) = \sum_{i} P(X | h_i, \mathbf{d}) P(h_i | \mathbf{d})$$
$$= \sum_{i} P(X | h_i) P(h_i | \mathbf{d})$$

- Predictions are weighted averages over the predictions of the individual hypotheses.
- The key quantities are the hypothesis prior
 P(n) and the likelihood P(d/n) of the data under each hypothesis.

Application of Bayes Rule

- Let *D* represent all the data with observed value *d*.
- The probability of each hypothesis is obtained by Bayes rule:

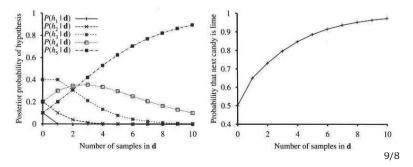
 $P(h_i \mid \mathbf{d}) = \alpha P(\mathbf{d} \mid h_i) P(h_i)$

- The manufacturer tells us that the prior distribution over h₁, ..., h₅ is given by
 <.1, .2, .4, .2, .1>
- We compute the likelihood of the data under the assumption that the observations are independently and identically distributed (i.i.d.):

$$P(\mathbf{d} \mid h_i) = \prod_j P(d_j \mid h_i)$$

Example

- Suppose the bag is an all-lime bag (n₅)
- The first 10 candies are all lime.
- Then P(a/h₃) is 0.5¹⁰ because half the candies in an h₃ bag are lime.
- Evolution of the five hypotheses given 10 lime candies were observed (the values start at the prior!).



Observations

- The true hypothesis often dominates the Bavesian prediction.
- For any fixed prior that does not rule out the true hypothesis, the posterior of any false hypothesis will eventually vanish.
- The Bayesian prediction is optimal and, given the hypothesis prior, any other prediction will be correct less often.
- It comes at a price that the hypothesis space can be very large or infinite.

10/9

Maximum-Likelihood Hypothesis (ML)

- A final simplification is to assume a uniform prior over the hypothesis space.
- In that case MAP-learning reduces to choosing the hypothesis that maximizes $P(a|h_i)$.
- This hypothesis is called the maximumlikelihood hypothesis (ML).
- ML-learning is a good approximation to MAP learning and Bayesian learning when there is a uniform prior and when the data set is large.

Maximum a Posteriori (MAP)

- A common approximation is to make predictions. based on a single most probable hypothesis.
- The maximum a posteriori (MAP) hypothesis is the one that maximizes P(h|d).

 $P(X \mid d) \approx P(X \mid h_{MAD})$

- In the candy example, $h_{MAP} = h_5$ after three lime candies in a row.
- The MAP learner the predicts that the fourth candy is lime with probability 1.0, whereas the Bayesian prediction is still 0.8.
- As more data arrive, MAP and Bayesian predictions hecome closer
- Finding MAP hypotheses is often much easier than Bayesian learning

9/10

Why Learning Works

How can we decide that h is close to f when f is unknown? \rightarrow Probably approximately correct

Idea: Any wrong hypothesis will be found out after a reasonable number of examples, since it makes a wrong prediction.

Add: "with high probability"

Stationarity as the basic assumption of PAC-Learning: training and test sets are selected from the same population of examples with the same probability distribution.

Some Notation

Key question: how many examples do we need?

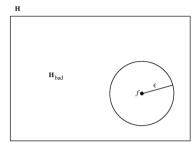
- X Set of examples
- *D* Distribution from which the examples are drawn
- H Hypothesis space ($_{f} \in H$)
- *m* Number of examples in the training set

 $error(h) = P(h(x) \neq f(x) \mid x \text{ drawn from } D) \leq \epsilon$

PAC-Learning

A hypothesis *h* is approximately correct if $error(h) \leq \epsilon$.

To show: After the training period with *m* examples, with high probability, all consistent hypotheses are approximately correct.



How high is the probability that a wrong hypothesis $n_{_{D}} \in H_{_{Dad}}$ is consistent with the first *m* examples?

9/13

Sample Complexity

Assumption: $error(h) > \epsilon \Rightarrow$

 $\mathsf{P}(_{h_{\scriptscriptstyle D}} \text{ is consistent with 1 example}) \leq (1-\epsilon)$

P(n_{b} is consistent with N examples) $\leq (1 - \epsilon)^{N}$

 $\mathsf{P}(\mathcal{H}_{_{\mathsf{bad}}} \text{ contains a consistent }_{h}) \leq |\mathcal{H}_{\mathsf{bad}}|(1-\epsilon)^{N}$

Since $|H_{\text{\tiny bad}}| \leq |H|$

 $P(H_{pag} \text{ contains a consistent } h) \leq |H|(1-\epsilon)^N$

We want to limit this probability by some small number δ :

$$|H|(1-\epsilon)^N < \delta$$

Since $(1 - \epsilon) \leq e^{-\epsilon}$, we derive

$$N \geq \frac{1}{\epsilon} \left(\log \left(\frac{1}{\delta} \right) + \log |H| \right)$$

Sample Complexity: Number of required examples, as a function of ϵ and δ .

9/14

Sample Complexity (2)

Example: Boolean functions

The number of Boolean functions over $_n$ attributes is $|H| = 2^{2^n}$.

The sample complexity therefore grows as 2[°].

Since the number of possible examples is also 2°, any learning algorithm for the space of all Boolean functions will do no better than a lookup table, if it merely returns a hypothesis that is consistent with all known examples.

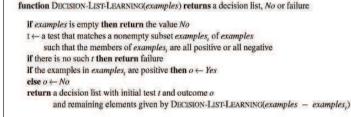
PAC-Learnable

Definition: Consider a concept class F over a set of instances X and a Learner using hypothesis space H. F is PAC-learnable by L using H, if for all f in F, distributions D over X, ε and δ , learner L will with probability at least (1- δ) output a hypothesis h in H such that error_D(h) $\leq \varepsilon$, in time that is polynomial in (1\ ε), (1\ δ), n, and size(h).

From T. Mitchell, Machine Learning

9/17

Learnability of k-DL



 $| k-DL(n) | \leq 3^{|Conj(n,k)|} | Conj(n,k)! |$ (Yes,No,no-Test,all permutations)

 $|Conj(n,k)| = \sum_{i=0}^{k} \binom{2n}{i} = O(n^k)$

(Combination without repeating pos/neg attributes)

 $| \text{k-DL}(n) |= 2^{O(n^k \log(n^k))}$

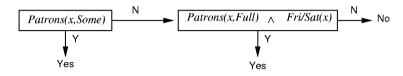
(with Euler's summation formula)

 $m \ge \frac{1}{\epsilon} (ln(\frac{1}{\delta}) + O(n^k log(n^k)))$

Learning from Decision Lists

In comparison to decision trees:

- The overall structure is simpler
- The individual tests are more complex



This represents the hypothesis

 $H_4: \forall x WillWait(x) \Leftrightarrow Patrons(x, some) \lor [Patrons(x, full) \land Fri/Sat(x)]$

If we allow tests of arbitrary size, then any Boolean function can be represented.

k-DL: Language with tests of length $\leq k$.

Note: k-DL includes decision trees of depth at most k.

9/18

Summary (Statistical Learning Methods)

- Bayesian learning techniques formulate learning as a form of probabilistic inference.
- Maximum a posteriori (MAP) learning selects the most likely hypothesis given the data.
- Maximum likelihood learning selects the hypothesis that maximizes the likelihood of the data.

Summary (Statistical Learning Theory)

Inductive learning as learning the representation of a function from example input/output pairs.

- Decision trees learn deterministic Boolean functions.
- PAC learning deals with the complexity of learning.
- Decision lists as functions that are easy to learn.

9/21