
SA-1

Foundations of AI
6. Board Games

Search Strategies for Games, Games
with Chance, State of the Art

Wolfram Burgard, Andreas Karwath,
Bernhard Nebel, and Martin Riedmiller

06/2

Contents

 Board Games

 Minimax Search

 Alpha-Beta Search

 Games with an Element of Chance

 State of the Art

06/3

Why Board Games?

Board games are one of the oldest branches of AI
(Shannon and Turing 1950).

 Board games present a very abstract and pure
form of competition between two opponents and
clearly require a form of “intelligence”.

 The states of a game are easy to represent.

 The possible actions of the players are well-
defined.

 Realization of the game as a search problem

 The world states are fully accessible

 It is nonetheless a contingency problem,
because the characteristics of the opponent are
not known in advance.

06/4

Problems

Board games are not only difficult because they are
contingency problems, but also because the search
trees can become astronomically large.

Examples:

• Chess: On average 35 possible actions from every
position, 100 possible moves  35100 ≈ 10150 nodes in the
search tree (with “only” 1040 legal chess positions).

• Go: On average 200 possible actions with ca. 300 moves
200300 ≈ 10700 nodes.

Good game programs have the properties that they

• delete irrelevant branches of the game tree,

• use good evaluation functions for in-between states, and

• look ahead as many moves as possible.

06/5

Terminology of Two-Person Board
Games

 Players are MAX and MIN, where MAX begins.
 Initial position (e.g., board arrangement)
 Operators (= legal moves)
 Termination test, determines when the game

is over. Terminal state = game over.
 Strategy. In contrast to regular searches,

where a path from beginning to end is simply a
solution, MAX must come up with a strategy to
reach a terminal state regardless of what MIN
does  correct reactions to all of MIN’s moves.

06/6

Tic-Tac-Toe Example

Every step of the search tree, also called game tree, is given the player’s
name whose turn it is (MAX- and MIN-steps).

When it is possible, as it is here, to produce the full search tree (game
tree), the minimax algorithm delivers an optimal strategy for MAX.

06/7

Minimax

1. Generate the complete game tree using depth-first
search.

2. Apply the utility function to each terminal state.
3. Beginning with the terminal states, determine the

utility of the predecessor nodes as follows:
• Node is a MIN-node

Value is the minimum of the successor nodes
• Node is a MAX-node

Value is the maximum of the successor nodes
• From the initial state (root of the game tree), MAX

chooses the move that leads to the highest value
(minimax decision).

Note: Minimax assumes that MIN plays perfectly.
Every weakness (i.e. every mistake MIN makes) can
only improve the result for MAX.

06/8

Minimax Example

06/9

Minimax Algorithm

Recursively calculates the best move from the initial
state.

Note: Minimax only works when the game tree is not
too deep. Otherwise, the minimax value must be
approximated.

06/10

Evaluation Function

When the search space is too large, the game tree can be
created to a certain depth only. The art is to correctly
evaluate the playing position of the leaves.

Example of simple evaluation criteria in chess:

 Material value: pawn 1, knight/bishop 3, rook 5, queen 9.

 Other: king safety, good pawn structure

 Rule of thumb: 3-point advantage = certain victory

The choice of evaluation function is decisive!

The value assigned to a state of play should reflect the
chances of winning, i.e., the chance of winning with a
1-point advantage should be less than with a 3-point
advantage.

06/11

Evaluation Function - General

The preferred evaluation functions are weighted, linear
functions:

w1f1 + w2f2 + … + wnfn

where the w’s are the weights, and the f’s are the
features. [e.g., w1 = 3, f1 = number of our own knights
on the board]

Assumption: The criteria are independent.

The weights can be learned. The criteria, however, must
be given (noone knows how they can be learned).

06/12

When Should we Stop Growing the Tree?

 Fixed-depth search

 Better: iterative deepening search (with cut-off at
the goal limit)

 …but only evaluate “peaceful” positions that won’t
cause large fluctuations in the evaluation function
in the following moves.

 e.g., follow a sequence of forced moves through to
the end.

06/13

Horizon Problem

 Black has a slight material advantage
 …but will eventually lose (pawn becomes a queen)
 A fixed-depth search cannot detect this because it thinks

it can avoid it (on the other side of the horizon - because
black is concentrating on the check with the rook, to
which white must react).

06/14

Alpha-Beta Pruning

We do not need to consider all nodes.

06/15

Alpha-Beta Pruning: General

If m > n we will never reach node n in the game.

06/16

Alpha-Beta Pruning

Minimax algorithm with depth-first search

α = the value of the best (i.e., highest-value)
choice we have found so far at any choice
point along the path for MAX.

β = the value of the best (i.e., lowest-value)
choice we have found so far at any choice
point along the path for MIN.

06/17

When Can we Prune?

The following applies:

α values of MAX nodes can never decrease

β values of MIN nodes can never increase

(1) Prune below the MIN node whose β -bound is less
than or equal to the α -bound of its MAX-predecessor
node.

(2) Prune below the MAX node whose α -bound is
greater than or equal to the β -bound of its MIN-
predecessor node.

 Provides the same results as the complete minimax
search to the same depth (because only irrelevant
nodes are eliminated).

06/18

Alpha-Beta Search Algorithm

Initial call with MAX-VALUE(initial-state, –∞, +∞)

06/19

Alpha-Beta Pruning Example

06/20

Alpha-Beta Pruning Example

06/21

Alpha-Beta Pruning Example

06/22

Alpha-Beta Pruning Example

06/23

Alpha-Beta Pruning Example

06/24

Efficiency Gain

 The alpha-beta search cuts the largest amount off the
tree when we examine the best move first.

 In the best case (always the best move first), the search
expenditure is reduced to O(bd/2).

 In the average case (randomly distributed moves), the
search expenditure is reduced to O((b/log b)d)

 For b < 100, we attain O(b3d/4).
 Practical case: A simple ordering heuristic brings the

performance close to the best case.
 We can search twice as deep in the same amount of

time

 In chess, we can thus reach a depth of 6-7 moves.

06/25

Games that Include an Element of
Chance

White has just rolled 6-5 and has 4 legal moves.

06/26

Game Tree for Backgammon

In addition to MIN- and MAX nodes, we need chance nodes
(for the dice).

06/27

Calculation of the Expected Value

Utility function for chance nodes C over MAX:

di: possible dice rolls

P(di): probability of obtaining that roll

S(C,di): attainable positions from C with roll di

utility(s): Evaluation of s

expectimax(C) = Σ P(di) max (utility(s))

expectimin likewise

S∈S(C,di)i

06/28

Problems

06/29

Card Games

 Recently card games such as bridge and poker have been
addressed as well

 One approach: simulate play with open cards and then
average over all possible plays (or make a Monte Carlo
simulation) using minimax (perhaps modified)

 Pick the move with the best expected result (usually all
moves will lead to a loss, but some give better results)

 Averaging over clairvoyancy

 Although “incorrect”, appears to give reasonable results

06/30

State of the Art

Checkers, draughts (by international rules): A program
called CHINOOK is the official world champion in man-
computer competition (acknowledges by ACF and EDA)
and the highest-rated player:
CHINOOK: 2712 Ron King: 2632
Asa Long: 2631 Don Lafferty: 2625

Backgammon: The BKG program defeated the official
world champion in 1980. A newer program TD-Gammon is
among the top 3 players.

Othello: Very good, even on normal computers. In 1997,
the Logistello program defeated the human world
champion.

Go: The best programs (Zen, Mogo, Crazystone) using
Monte Carlo techniques (UCT) are rated as good as strong
amateurs (1kyu/1dan) on the Internet Go servers.
However, its usually easy to adapt to the weaknesses of
these programs.

06/31

Chess (1)

Chess as “Drosophila” of AI research.

• A limited number of rules produces an unlimited
number of courses of play. In a game of 40 moves,
there are 1.5 x 10128 possible courses of play.

• Victory comes through logic, intuition, creativity, and
previous knowledge.

• Only special chess intelligence, no “general
knowledge”

06/32

Chess (2)
In 1997, world chess master G. Kasparow was beaten by
a computer in a match of 6 games.

Deep Blue (IBM Thomas J. Watson Research Center)

 Special hardware (32 processors with 8 chips, 2 Mi.
calculations per second)

 Heuristic search

 Case-based reasoning and learning techniques

 1996 Knowledge based on 600 000 chess games

 1997 Knowledge based on 2 million chess games

 Training through grand masters

 Duel between the “machine-like human Kasparow vs.
the human machine Deep Blue.”

Chess (3)

Nowadays, ordinary PC hardware is enough …

But note that the machine ELO points are not strictly
comparable to human ELO points …

06/33

Name Strength (ELO)

Rybka 2.3.1 2962

G. Kasperow 2828

V. Anand 2758

A. Karpow 2710

Deep Blue 2680

06/34

The Reasons for Success…

 Alpha-Beta-Search

 … with dynamic decision-making for uncertain positions

 Good (but usually simple) evaluation functions

 Large databases of opening moves.

 Very large game termination databases (for checkers,
all 10-piece situations)

 For Go, Monte-Carlo techniques proved to be successful!

 And very fast and parallel processors!

06/35

Summary

 A game can be defined by the initial state, the operators
(legal moves), a terminal test and a utility function
(outcome of the game).

 In two-player board games, the minimax algorithm can
determine the best move by enumerating the entire
game tree.

 The alpha-beta algorithm produces the same result but
is more efficient because it prunes away irrelevant
branches.

 Usually, it is not feasible to construct the complete game
tree, so the utility of some states must be determined by
an evaluation function.

 Games of chance can be handled by an extension of the
alpha-beta algorithm.

	Foundations of AI
	Contents
	Why Board Games?
	Problems
	Terminology of Two-Person Board Games
	Tic-Tac-Toe Example
	Minimax
	Minimax Example
	Minimax Algorithm
	Evaluation Function
	Evaluation Function - General
	When Should we Stop Growing the Tree?
	Horizon Problem
	Alpha-Beta Pruning
	Alpha-Beta Pruning: General
	Slide 16
	When Can we Prune?
	Alpha-Beta Search Algorithm
	Alpha-Beta Pruning Example
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Efficiency Gain
	Games that Include an Element of Chance
	Game Tree for Backgammon
	Calculation of the Expected Value
	Slide 28
	Card Games
	State of the Art
	Chess (1)
	Chess (2)
	Chess (3)
	The Reasons for Success…
	Summary

