Artificial Intelligence

5. Constraint Satisfaction
Problems

CSPs as Search Problems, Solving

CSPs, Problem Structure
Wolfram Burgard, Andreas Karwath,
Bernhard Nebel, and Martin Riedmiller

Constraint Satisfaction Problems

In search problems, the state does not have a
structure (everything is in the data structure). In
CSPs, states are explicitly represented as variable
assignments.

A CSP consists of
= a set of variables {x,, x,, ..., x,} to which
= values {d,, d,, ... ,d,} can be assigned
* such that a set of constraints over the variables
is respected

A CSP is solved by a variable assignment that
satisfies all given constraints.

Formal representation language with associated
general inference algorithms

05/3

Contents

What are CSPs?

Backtracking Search for CSPs
CSP Heuristics

Constraint Propagation

Problem Structure

05/2

Example: Map-Coloring

® \ariables:
® Values:
® Constraints:

Tasmani;

WA, NT, SA, Q, NSW, V, T

{red, green, blue}

adjacent regions must have
different colors, e.g., NSW = V

05/4

Australian Capital Territory (ACT)
and Canberra (inside NSW)

View of the Australian National University and Telstra Tower
05/5

Constraint Graph

@‘@"°

o
O

= Works for binary CSPs (otherwise hyper-graph)
®= Nodes = variables, arcs = constraints

®= Graph structure can be important (e.g., connected
components)

Note: Our problem is 3-colorability for a planar graph

05/7

One Solution

® Solution assignment:

* { WA =red, NT = green, Q = red, NSW =
green, V = red, SA = blue, T = green }

* Perhaps in addition ACT = blue

Variations

* Binary, ternary, or even higher arity

* Finite domains (d values) => d'possible
variable assignments

* Infinite domains (reals, integers)
* |inear constraints: solvable (in P if real)
* nonlinear constraints: unsolvable

05/6

05/8

Applications

= Timetabling (classes, rooms, times)
= Configuration (hardware, cars, ...)
®= Spreadsheets

®= Scheduling

®= Floor planning

® Frequency assignments

05/9

Algorithm

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING([], esp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution/failure
if assignad is complete then return assigned
var4— SELECT-UNASSIGNED- VARIABLE(VARIABLES| csp|, assigned, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
if value is consistent with assigned according to CONSTRAINTS[csp] then
result+— RECURSIVE-BACKTRACKING([var = value|assigned|, csp)
if result # failure then return result
end
return failure

05/11

Backtracking Search over
Assignments

* Assign values to variables step by step (order
does not matter)

* Consider only one variable per search node!

* DFS with single-variable assignments is called
backtracking search

* Can solve n-queens for n = 25

05/10

Example (1)

05/12

Example (2) Example (3)

¢ ¢ & L Sl SO oS
il

05/13 05/14

Example (4) Improving Efficiency:
CSP Heuristics & Pruning Techniques

Variable ordering: Which one to assign first?
Value ordering: Which value to try first?

Try to detect failures early on

Try to exploit problem structure

77T-

?i
2 »
e

Note: all this is not problem-specific!

05/15 05/16

Variable Ordering:
Most constrained first

® Most constrained variable:

® choose the variable with the fewest
remaining legal values

> reduces branching factor!
05/17

Value Ordering:
Least Constraining Value First

® Given a variable,

® choose first a value that rules out the fewest
values in the remaining unassigned variables

> We want to find an assignment that satisfies
the constraints (of course, does not help if

linsat.)
ﬂ Allows 1 value for 84
H gl
e ' ‘!% Allows 0 values for SA

05/19

Variable Ordering:
Most Constraining Variable First

® Break ties among variables with the same
number of remaining legal values:

® choose variable with the most constraints on
remaining unassigned variables

> reduces branching factor in the next steps

05/18

Rule out Failures early on:
Forward Checking

® Whenever a value is assigned to a variable,
values that are now illegal for other variables
are removed

® |[mplements what the ordering heuristics
implicitly compute
" WA = red, then NT cannot become red

= |f all values are removed for one variable, we
can stop!

05/20

Forward Checking (1)

* Keep track of remaining values
= Stop if all have been removed

Ro

WA NT Q NSW v SA T

CE IR IR I IR IC]

05/21

Forward Checking (3)

* Keep track of remaining values
= Stop if all have been removed

S SSE S~

WA NT o NSW v sA T
I I NI i irern i

(]| SEENESE/ESE] SH[ES 6]

05/23

Forward Checking (2)

* Keep track of remaining values
* Stop if all have been removed

SSE S

WA NT Q NSW v SA T
I I Irer e irern i

(| SEESEEr e SE[ES

05/22

Forward Checking (4)

* Keep track of remaining values
* Stop if all have been removed

SSEN SSha S~

WA NT Q NSW v SA T

05/24

Forward Checking:
Sometimes it Misses Something

* Forward Checking propagates information
from assigned to unassigned variables

* However, there is no propagation between
unassigned variables

SSEA SR o

WA NT o NSW v SA T
(EEEErEErE[ErE e EEE e[]

(]| SEEEEr e/ SE|ES N

05/25
Arc Consistency Example
WA NT Q NSW v SA T
1 E[ran e mmeE] E[EhE]
05/27

Arc Consistency

A directed arc X — Y is “consistent” iff

* for every value x of X, there exists a value y
of Y, such that (x,y) satisfies the constraint
between Xand Y

* Remove values from the domain of X to
enforce arc-consistency

* Arc consistency detects failures earlier

Can be used as preprocessing technique or as
a propagation step during backtracking

05/26

AC3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables { X, X», ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi. X;)— REMOVE-FIRST(quewe)

if REMOVE-INCONSISTENT-VALUES(X,, X;) then

for each X in NEIGHBORS[X)] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X ;) returns true iff we remove
a value

removed — false

for each zin DomAIN[Y;] do

if no value y in DoMAIN[X] allows (z,9) to satisfy the constraint between X;
and X,
then delete = from DoOMAIN[X}]; removed — true
return removed

05/28

Properties of AC3

= AC3 runsin O(d°n?) time, with n being the
number of nodes and d being the maximal
number of elements in a domain

= Of course, AC3 does not detect all
inconsistencies (which is an NP-hard problem)

05/29

Problem Structure (2):
Tree-structured CSPs

() ()
8)—(D]
© ®)

= |f the CSP graph is a tree, then it can be solved
in O(nad?)
= General CSPs need in the worst case O(d")

= J/dea: Pick root, order nodes, apply arc
consistency from leaves to root, and assign
values starting at root

05/31

Problem Structure (1)

()
=)

O

Q)

= CSP has two independent components

= |dentifiable as connected components of
constraint graph

= Can reduce the search space dramatically

®‘:'é

Problem Structure (2):
Tree-structured CSPs

(&) ()
09 QG QxC0\0, 006,

= Apply arc-consistency to (X, X,), when X is the
parent of X, for all k=n downto 2.
= Now one can start at X, assigning values from

the remaining domains without creating any
conflict in one sweep through the tree!

= Algorithm linear in n

05/30

05/32

Problem Structure (3):
Almost Tree-structured

= Conditioning: Instantiate a variable and prune
values in neighboring variables

O—@) O—a
@‘@"@ - S

o &

® ®

* Cutset conditioning: Instantiate (in all ways) a
set of variables in order to reduce the graph to
a tree (note: finding minimal cutset is NP-hard)

05/33

Another Method:
Tree Decomposition (2)

® A tree decomposition must satisfy the following
conditions:

= Every variable of the original problem appears in at least
one sub-problem

= Every constraint appears in at least one sub-problem

= |f a variable appears in two sub-problems, it must agpear
in all sub-problems on the path between the two sub-
problems

® The connections form a tree

05/35

Another Method:

Tree Decomposition (1)

= Decompose problem into a set of connected
sub-problems, where two sub-problems are
connected when they share a constraint

= Solve sub-problems independently and

combine solutions

Another Method:

Tree Decomposition (3)

= Consider sub-problems as new mega-nodes,
which have values defined by the solutions to

the sub-problems

= Use technique for tree-structured CSP to find
an overall solution (constraint is to have
identical values for the same variable).

{WA=red, NT=green, SA=blue}
{WA=red, NT=blue, SA=green}
{WA=blue, NT=green, SA=red}

{NT=blue, SA=green, Q=red}

/ {NT=green, SA=red, Q=blue}

{NT=green, SA=blue, Q=red}

05/34

05/36

Tree Width

Tree width of a tree decomposition = size of
largest sub-problem minus 1

Tree width of a graph is minimal tree width
over all possible tree decompositions

If a graph has tree width w and we know a tree
decomposition with that width, we can solve
the problem in O(nad»+1)

Finding a tree decomposition with minimal tree
width is NP-hard

05/37

Summary & Outlook

= CSPs are a special kind of search problem:
= states are value assignments
= goal test is defined by constraints

= Backtracking = DFS with one variable assigned per node.
Other intelligent backtracking techniques possible

= Variable/value ordering heuristics can help dramatically
* Constraint propagation prunes the search space

= Path-consistency is a constraint propagation technique for
triples of variables

= Tree structure of CSP graph simplifies problem significantly

= Cutset conditioning and tree decomposition are two ways to
transform part of the problem into a tree

* CSPs can also be solved using local search

05/38

