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Constraint Satisfaction Problems

In search problems, the state does not have a
structure (everything is in the data structure). In
CSPs, states are explicitly represented as variable
assignments.

A CSP consists of
= a set of variables {x,, x,, ..., x,} to which
= values {d,, d,, ... ,d,} can be assigned
* such that a set of constraints over the variables
is respected

A CSP is solved by a variable assignment that
satisfies all given constraints.

Formal representation language with associated
general inference algorithms
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Example: Map-Coloring

® \ariables:
® Values:
® Constraints:

Tasmani;

WA, NT, SA, Q, NSW, V, T

{red, green, blue}

adjacent regions must have
different colors, e.g., NSW = V
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Australian Capital Territory (ACT)
and Canberra (inside NSW)

View of the Australian National University and Telstra Tower
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Constraint Graph
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= Works for binary CSPs (otherwise hyper-graph)
®= Nodes = variables, arcs = constraints

®= Graph structure can be important (e.g., connected
components)

Note: Our problem is 3-colorability for a planar graph
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One Solution

® Solution assignment:

* { WA =red, NT = green, Q = red, NSW =
green, V = red, SA = blue, T = green }

* Perhaps in addition ACT = blue

Variations

* Binary, ternary, or even higher arity

* Finite domains (d values) => d'possible
variable assignments

* Infinite domains (reals, integers)
* |inear constraints: solvable (in P if real)
* nonlinear constraints: unsolvable
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Applications

= Timetabling (classes, rooms, times)
= Configuration (hardware, cars, ...)
®= Spreadsheets

®= Scheduling

®= Floor planning

® Frequency assignments
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Algorithm

function BACKTRACKING-SEARCH( csp) returns solution/failure
return RECURSIVE-BACKTRACKING([], esp)

function RECURSIVE-BACKTRACKING( assigned, csp) returns solution/failure
if assignad is complete then return assigned
var4— SELECT-UNASSIGNED- VARIABLE( VARIABLES| csp|, assigned, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
if value is consistent with assigned according to CONSTRAINTS[csp] then
result+— RECURSIVE-BACKTRACKING([var = value|assigned|, csp)
if result # failure then return result
end
return failure
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Backtracking Search over
Assignments

* Assign values to variables step by step (order
does not matter)

* Consider only one variable per search node!

* DFS with single-variable assignments is called
backtracking search

* Can solve n-queens for n = 25

05/10

Example (1)
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Example (2) Example (3)
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Example (4) Improving Efficiency:
CSP Heuristics & Pruning Techniques

Variable ordering: Which one to assign first?
Value ordering: Which value to try first?

Try to detect failures early on

Try to exploit problem structure
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Note: all this is not problem-specific!
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Variable Ordering:
Most constrained first

® Most constrained variable:

® choose the variable with the fewest
remaining legal values

> reduces branching factor!
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Value Ordering:
Least Constraining Value First

® Given a variable,

® choose first a value that rules out the fewest
values in the remaining unassigned variables

> We want to find an assignment that satisfies
the constraints (of course, does not help if

linsat.)
ﬂ Allows 1 value for 84
H gl
e ' ‘!% Allows 0 values for SA
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Variable Ordering:
Most Constraining Variable First

® Break ties among variables with the same
number of remaining legal values:

® choose variable with the most constraints on
remaining unassigned variables

> reduces branching factor in the next steps
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Rule out Failures early on:
Forward Checking

® Whenever a value is assigned to a variable,
values that are now illegal for other variables
are removed

® |[mplements what the ordering heuristics
implicitly compute
" WA = red, then NT cannot become red

= |f all values are removed for one variable, we
can stop!
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Forward Checking (1)

* Keep track of remaining values
= Stop if all have been removed
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Forward Checking (3)

* Keep track of remaining values
= Stop if all have been removed
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Forward Checking (2)

* Keep track of remaining values
* Stop if all have been removed
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Forward Checking (4)

* Keep track of remaining values
* Stop if all have been removed
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WA NT Q NSW v SA T
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Forward Checking:
Sometimes it Misses Something

* Forward Checking propagates information
from assigned to unassigned variables

* However, there is no propagation between
unassigned variables
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Arc Consistency Example
WA NT Q NSW v SA T
1 E[ran e mmeE] E[EhE]
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Arc Consistency

A directed arc X — Y is “consistent” iff

* for every value x of X, there exists a value y
of Y, such that (x,y) satisfies the constraint
between Xand Y

* Remove values from the domain of X to
enforce arc-consistency

* Arc consistency detects failures earlier

Can be used as preprocessing technique or as
a propagation step during backtracking
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AC3 Algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables { X, X», ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi. X;)— REMOVE-FIRST( quewe)

if REMOVE-INCONSISTENT-VALUES(X,, X;) then

for each X in NEIGHBORS[X)] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES( X;, X ;) returns true iff we remove
a value

removed — false

for each zin DomAIN[Y;] do

if no value y in DoMAIN[X ] allows (z,9) to satisfy the constraint between X;
and X,
then delete = from DoOMAIN[X}]; removed — true
return removed
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Properties of AC3

= AC3 runsin O(d°n?) time, with n being the
number of nodes and d being the maximal
number of elements in a domain

= Of course, AC3 does not detect all
inconsistencies (which is an NP-hard problem)
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Problem Structure (2):
Tree-structured CSPs
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= |f the CSP graph is a tree, then it can be solved
in O(nad?)
= General CSPs need in the worst case O(d")

= J/dea: Pick root, order nodes, apply arc
consistency from leaves to root, and assign
values starting at root
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Problem Structure (1)
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= CSP has two independent components

= |dentifiable as connected components of
constraint graph

= Can reduce the search space dramatically
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Problem Structure (2):
Tree-structured CSPs
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= Apply arc-consistency to (X, X,), when X is the
parent of X, for all k=n downto 2.
= Now one can start at X, assigning values from

the remaining domains without creating any
conflict in one sweep through the tree!

= Algorithm linear in n
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Problem Structure (3):
Almost Tree-structured

= Conditioning: Instantiate a variable and prune
values in neighboring variables
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* Cutset conditioning: Instantiate (in all ways) a
set of variables in order to reduce the graph to
a tree (note: finding minimal cutset is NP-hard)
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Another Method:
Tree Decomposition (2)

® A tree decomposition must satisfy the following
conditions:

= Every variable of the original problem appears in at least
one sub-problem

= Every constraint appears in at least one sub-problem

= |f a variable appears in two sub-problems, it must agpear
in all sub-problems on the path between the two sub-
problems

® The connections form a tree
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Another Method:

Tree Decomposition (1)

= Decompose problem into a set of connected
sub-problems, where two sub-problems are
connected when they share a constraint

= Solve sub-problems independently and

combine solutions

Another Method:

Tree Decomposition (3)

= Consider sub-problems as new mega-nodes,
which have values defined by the solutions to

the sub-problems

= Use technique for tree-structured CSP to find
an overall solution (constraint is to have
identical values for the same variable).

{WA=red, NT=green, SA=blue}
{WA=red, NT=blue, SA=green}
{WA=blue, NT=green, SA=red}

{NT=blue, SA=green, Q=red}

/ {NT=green, SA=red, Q=blue}

{NT=green, SA=blue, Q=red}
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Tree Width

Tree width of a tree decomposition = size of
largest sub-problem minus 1

Tree width of a graph is minimal tree width
over all possible tree decompositions

If a graph has tree width w and we know a tree
decomposition with that width, we can solve
the problem in O(nad»+1)

Finding a tree decomposition with minimal tree
width is NP-hard
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Summary & Outlook

= CSPs are a special kind of search problem:
= states are value assignments
= goal test is defined by constraints

= Backtracking = DFS with one variable assigned per node.
Other intelligent backtracking techniques possible

= Variable/value ordering heuristics can help dramatically
* Constraint propagation prunes the search space

= Path-consistency is a constraint propagation technique for
triples of variables

= Tree structure of CSP graph simplifies problem significantly

= Cutset conditioning and tree decomposition are two ways to
transform part of the problem into a tree

* CSPs can also be solved using local search
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