Foundations of AI 4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node is in the form of an *evaluation* function f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" *f*- or *h*-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence

inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN

return GENERAL-SEARCH(problem, Queueing-Fn)

When *h* is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its distance to the goal.

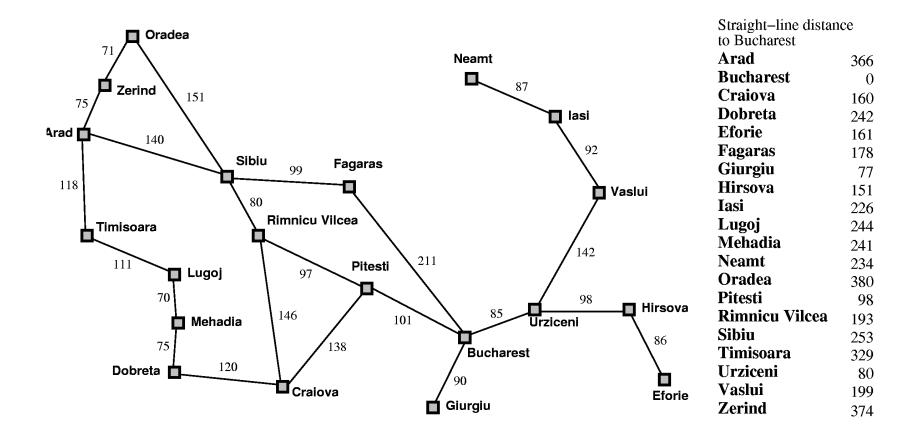
h(n) = estimated distance from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

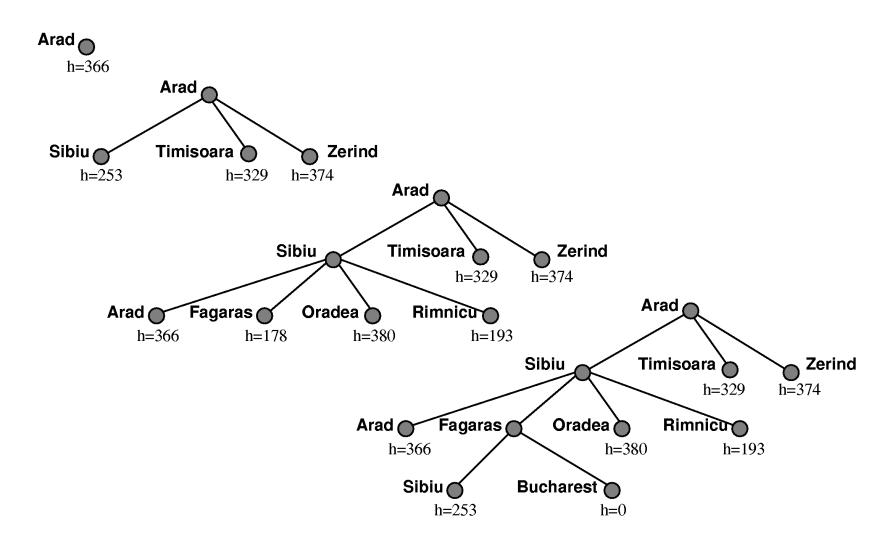
A best-first search with this function is called a greedy search.

Route-finding problem: h = straight-line distance between two locations.

Greedy Search Example



Greedy Search from *Arad* **to** *Bucharest*



Heuristics

The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word heuristic is derived from the Greek word
 ευρισκειν (note also: ευρηκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.
- → In all cases, the heuristic is *problem-specific* and *focuses* the search!

A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-search strategy.

q(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

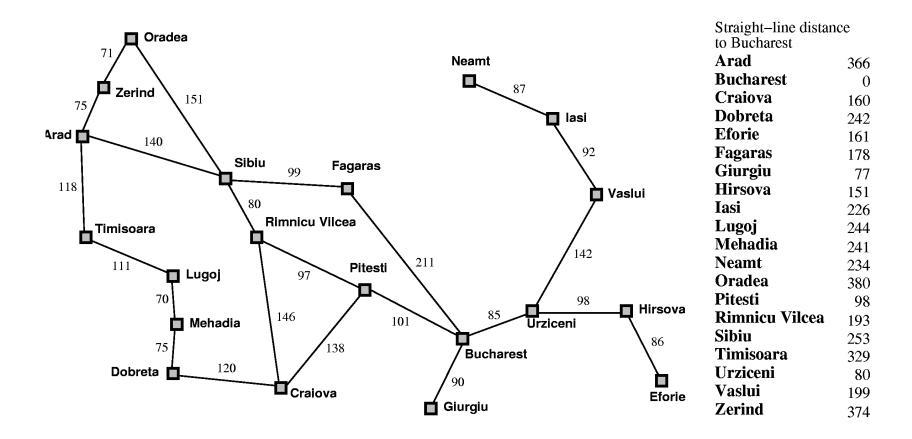
Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal.

h is admissible if the following holds for all n:

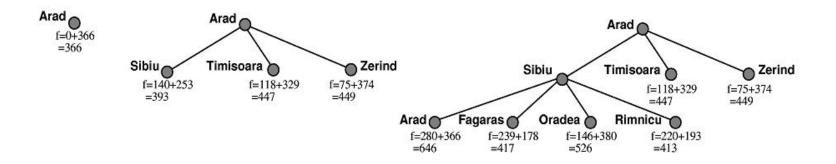
$$h(n) \leq h^*(n)$$

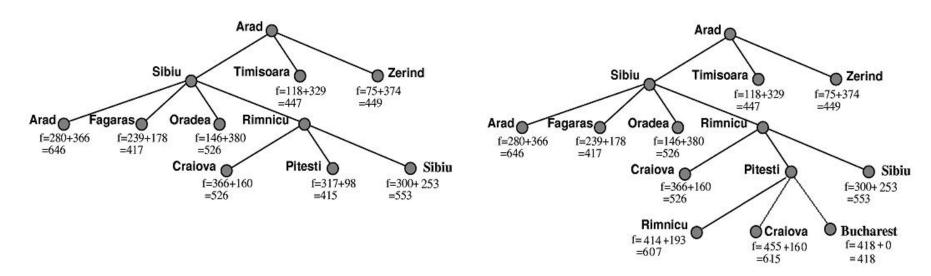
We require that for A*, h is admissible (straight-line distance is admissible).

A* Search Example

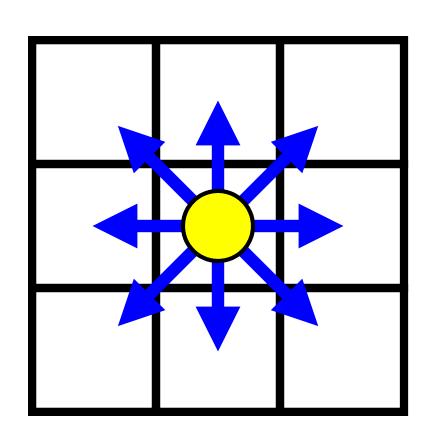


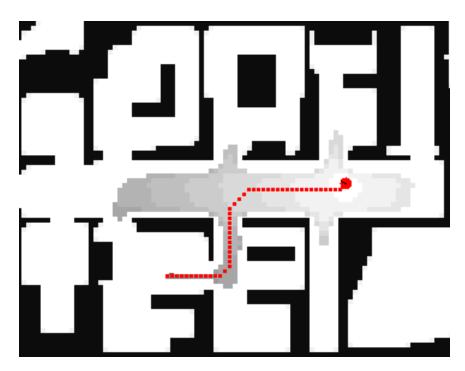
A* Search from *Arad* to *Bucharest*





Example: Path Planning for Robots in a Grid-World

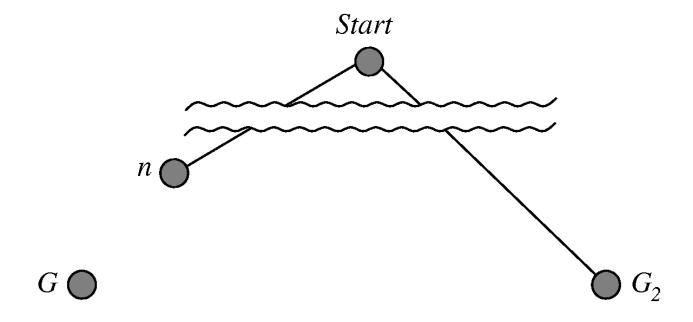




Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* , but A* has found another node G_2 with $g(G_2) > f^*$.



Let *n* be a node on the path from the start to G that has not yet been expanded. Since *h* is admissible, we have

$$f(n) \leq f^*$$
.

Since n was not expanded before G_2 , the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*$$
.

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*$$
.

→ Contradicts the assumption!

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ .

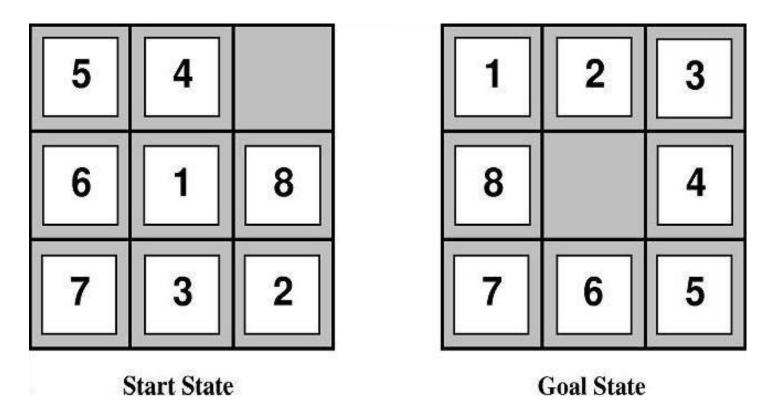
 \rightarrow Only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In the case in which $|h^*(n) - h(n)| \le O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a subexponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].

Normally, growth is exponential because the error is proportional to the path costs.

Heuristic Function Example



- $h_1 = the number of tiles in the wrong position$
- h_2 = the sum of the distances of the tiles from their goal positions (*Manhattan distance*)

Empirical Evaluation

- d = distance from goal
- Average over 100 instances

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A*(h_1)$	$A*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

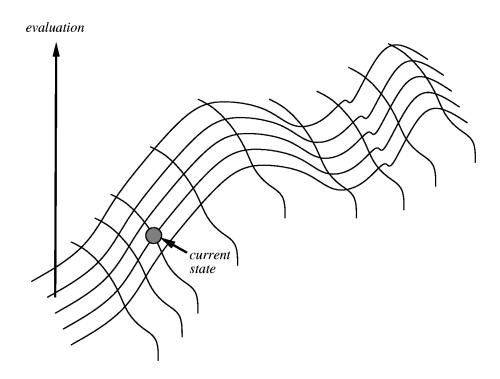
```
function IDA*(problem) returns a solution sequence
  inputs: problem, a problem
  static: f-limit, the current f- COST limit
          root, a node
  root \leftarrow MAKE-NODE(INITIAL-STATE[problem])
  f-limit \leftarrow f- COST(root)
  loop do
      solution, f-limit \leftarrow DFS-CONTOUR(root, f-limit)
      if solution is non-null then return solution
      if f-limit = \infty then return failure; end
function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
  inputs: node, a node
          f-limit, the current f- Cost limit
  static: next-f, the f- Cost limit for the next contour, initially \infty
  if f- COST[node] > f-limit then return null, f- COST[node]
  if GOAL-TEST[problem](STATE[node]) then return node, f-limit
  for each node s in SUCCESSORS(node) do
      solution, new-f \leftarrow DFS-Contour(s, f-limit)
      if solution is non-null then return solution, f-limit
      next-f \leftarrow MIN(next-f, new-f); end
  return null, next-f
```

Local Search Methods

In many problems, it is unimportant how the goal is reached - only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a **local search** can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise \rightarrow Hill Climbing.



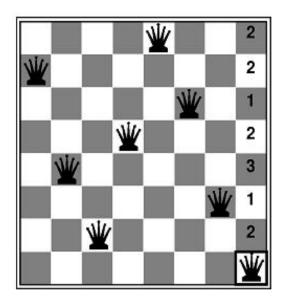
Hill Climbing

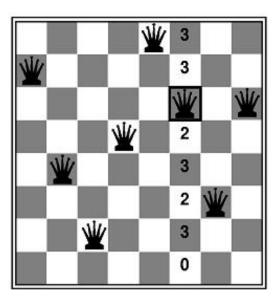
```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
    next, a node

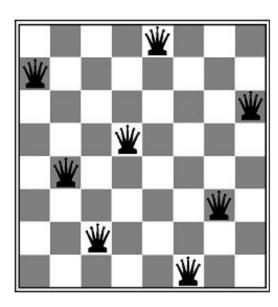
current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    next ← a highest-valued successor of current
    if VALUE[next] < VALUE[current] then return current
    current ← next
end</pre>
```

Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.







Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- Plateaus: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- Start over when no progress is being made.
- "Inject noise" → random walk
- Tabu search: Do not apply the last n operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, "noise" is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps

current \leftarrow Make-Node(Initial-State[problem]) for t \leftarrow 1 to \infty do

T \leftarrow schedule[t]

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow Value[next] - Value[current]

if \Delta E > 0 then current \leftarrow next
else current \leftarrow next only with probability e^{\Delta E T}
```

Has been used since the early 80's for VSLI layout and other optimization problems.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

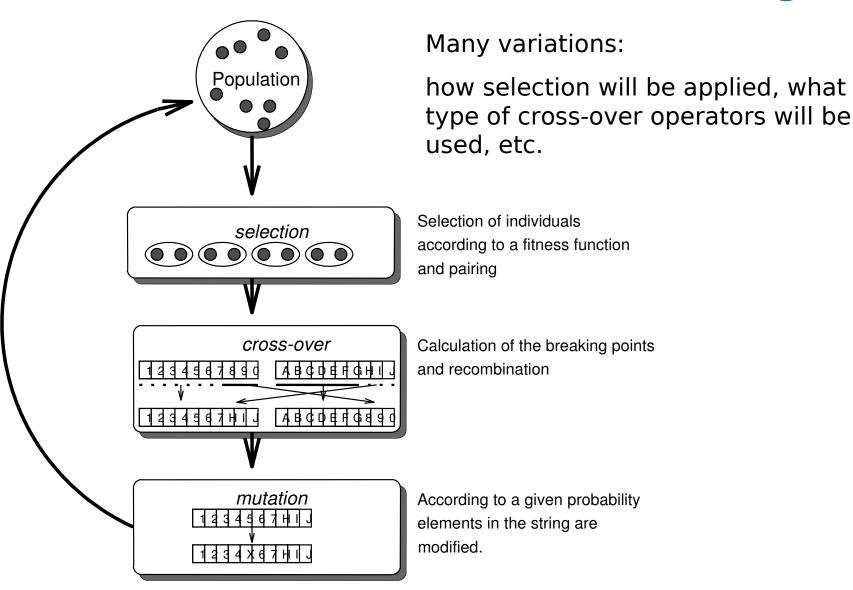
Idea: Similar to evolution, we search for solutions by "crossing", "mutating", and "selecting" successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bitstring
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Selection, Mutation, and Crossing



Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h^* is never overestimated, we obtain the A^* search, which is complete and optimal.
- IDA* is a combination of the iterative-deepening and A* searches.
- Local search methods only ever work on one state, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.