Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node is in the form of an *evaluation* function f or h, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" *f*- or *h*-value.

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

04/2

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence inputs: problem, a problem Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, Queueing-Fn)

When *h* is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search with this function is called a *greedy search*.

Route-finding problem: h = straight-line distance between two locations.

Greedy Search Example

Greedy Search from *Arad* **to** *Bucharest*

Heuristics

04/5

04/7

The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word ευρισκειν (note also: ευρηκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is *problem-specific* and *focuses* the search!

04/6

160

242

161

178

77

151

226

244

241

234

98

193

253

329

80

199

A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-search strategy.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal.

h is *admissible* if the following holds for all *n* :

$$h(n) \leq h^*(n)$$

04/9

We require that for A^* , h is admissible (straight-line distance is admissible).

A* Search Example

Straight–line dista to Bucharest	nce
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

04/10

A* Search from Arad to Bucharest

Arad Fagaras Orades Rimnicu [=140+280] [=300+253] [=118+329 [=353+374] [=300+253] [=300+

Example: Path Planning for Robots in a Grid-World

04/11 04/11

Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* , but A* has found another node G_2 with $g(G_2) > f^*$.

04/13

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ .

 \rightarrow Only a finite number of nodes n with $f(n) \le f^*$.

Complexity:

In the case in which $|h^*(n) - h(n)| \le O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].

Normally, growth is exponential because the error is proportional to the path costs.

Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*$$
.

Since n was not expanded before G_2 , the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*$$
.

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*$$
.

→ Contradicts the assumption!

04/14

Heuristic Function Example

 $h_1 =$ the number of tiles in the wrong position

h₂ = the sum of the distances of the tiles from their goal positions (*Manhattan distance*)

Empirical Evaluation

- d = distance from goal
- Average over 100 instances

	Search Cost			Effective Branching Factor		
d	IDS	$A*(h_1)$	$A*(h_2)$	IDS	$A*(h_1)$	A*(h ₂)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

04/17

Local Search Methods

In many problems, it is unimportant how the goal is reached – only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a **local search** can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise \rightarrow **Hill Climbing**.

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

```
function IDA*(problem) returns a solution sequence
  inputs: problem, a problem
  static: f-limit, the current f- COST limit
         root, a node
  root \leftarrow MAKE-NODE(INITIAL-STATE[problem])
  f-limit \leftarrow f- COST(root)
  loop do
     solution, f-limit ← DFS-CONTOUR(root, f-limit)
     if solution is non-null then return solution
     If f-limit = \infty then return failure; end
function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
  inputs: node, a node
          f-limit, the current f- COST limit
  static: next-f, the f- COST limit for the next contour, initially \infty
  if f - Cost[node] > f-limit then return null, f - Cost[node]
  if GOAL-TEST[problem](STATE[node]) then return node, f-limit
  for each node s in SUCCESSORS(node) do
     solution, new-f \leftarrow DFS-CONTOUR(s, f-limit)
     if solution is non-null then return solution, f-limit
     next-f \leftarrow MIN(next-f, new-f); end
  return null, next-f
```

04/18

Hill Climbing

```
function HILL-CLIMBING( problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end
```

Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.

04/21

Simulated Annealing

In the simulated annealing algorithm, "noise" is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps

current ← MAKE-NODE[INITIAL-STATE[problem]) for t ← 1 to ∞ do

T ← schedule[t]

if T=0 then return current

next ← a randomly selected successor of current

ΔΕ ← VALUE[next] - VALUE[current]

if ΔΕ > 0 then current ← next

else current ← next only with probability e<sup>ΔE/T</sup>
```

Has been used since the early 80's for VSLI layout and other optimization problems.

Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- Plateaus: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- Start over when no progress is being made.
- "Inject noise" → random walk
- Tabu search: Do not apply the last n operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by "crossing", "mutating", and "selecting" successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bitstring
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Selection, Mutation, and Crossing

Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h^* is never overestimated, we obtain the A^* search, which is complete and optimal.
- IDA* is a combination of the iterative-deepening and A* searches.
- Local search methods only ever work on one state, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.