
SA-1

3. Solving Problems by
Searching

Foundations of AI

Problem-Solving Agents,
Formulating Problems, Search

Strategies
Wolfram Burgard, Andreas Karwath,

Bernhard Nebel, and Martin Riedmiller

03/2

Contents

 Problem-Solving Agents

 Formulating Problems

 Problem Types

 Example Problems

 Search Strategies

03/3

Problem-Solving Agents

 Goal-based agents

Formulation: problem as a state-space and
goal as a particular condition on states

Given: initial state

Goal: To reach the specified goal (a state)
through the execution of appropriate
actions.

 Search for a suitable action sequence and
execute the actions

03/4

A Simple Problem-Solving Agent

03/5

Properties of this Agent

 Static world

 Observable environment

 Discrete states

 Deterministic environment

03/6

Problem Formulation

 Goal formulation
World states with certain properties

 Definition of the state space
(important: only the relevant aspects abstraction)

 Definition of the actions that can change the world
state

 Definition of the problem type, which depends on the
knowledge of the world states and actions
 states in the search space

 Specification of the search costs (search costs, offline
costs) and the execution costs (path costs, online
costs)

Note: The type of problem formulation can have a
serious influence on the difficulty of finding a solution.

03/7

Example Problem Formulation

Given an nxn board from which two diagonally opposite
corners have been removed (here 8x8):

Goal: Cover the board completely with dominoes, each of
which covers two neighbouring squares.

 Goal, state space, actions, search, …

03/8

Alternative Problem Formulation

Question:

Can a chess board consisting of n2/2 black and n2/2-2
white squares be completely covered with dominoes such
that each domino covers one black and one white
square?

… clearly not.

03/9

Problem Formulation for the Vacuum
Cleaner World

 World state space:
2 positions, dirt or no dirt
 8 world states

 Actions:
Left (L), Right (R), or Suck (S)

 Goal: no
dirt in the rooms

 Path costs:
one unit per action

03/10

Problem Types:
Knowledge of States and Actions

 Single-state problem
Complete world state knowledge
Complete action knowledge
 The agent always knows its world state

 Multiple-state problem
Incomplete world state knowledge
Incomplete action knowledge
 The agent only knows which group of world states it is in

 Contingency problem
It is impossible to define a complete sequence of actions
that constitute a solution in advance because information
about the intermediary states is unknown.

 Exploration problem
State space and effects of actions unknown. Difficult!

03/11

The Vacuum Cleaner Problem as a
One-State Problem

If the environment is completely accessible, the vacuum
cleaner always knows where it is and where the dirt is.
The solution then is reduced to searching for a path from
the initial state to the goal state.

States for the search: The world states 1-8.

03/12

The Vacuum Cleaner World as a
Multiple-State Problem

If the vacuum
cleaner has no
sensors, it doesn’t
know where it or the
dirt is.

In spite of this, it
can still solve the
problem. Here,
states are
knowledge states.

States for the
search: The power
set of the world
states 1-8.

03/13

03/14

Concepts (1)

Initial State
The state from which the agent infers that it is at the
beginning

State Space
Set of all possible states

Actions
Description of possible actions and their outcome
(successor function)

Goal Test
Tests whether the state description matches a goal state

03/15

Concepts (2)

Path
A sequence of actions leading from one state to
another.

Path Costs
Cost function g over paths. Usually the sum of the
costs of the actions along the path.

Solution
Path from an initial to a goal state

Search Costs
Time and storage requirements to find a solution

Total Costs
Search costs + path costs

03/16

Example: The 8-Puzzle

 States:
Description of the location of each of the eight tiles and (for efficiency)
the blank square.

 Initial State:
Initial configuration of the puzzle.

 Actions or Successor function:
Moving the blank left, right, up, or down.

 Goal Test:
Does the state match the configuration on the right (or any other
configuration)?

 Path Costs:
Each step costs 1 unit (path costs corresponds to its length).

03/17

Example: 8-Queens Problem

 States:
Any arrangement of 0 to 8 queens on the board.

 Initial state:
No queen on the board.

 Successor function:
Add a queen to an empty field on the board.

 Goal test:
8 queens on the board such that no queen attacks another

 Path costs:
0 (we are only interested in the solution).

Almost a solution:

03/18

Example: 8-Queens Problem

 States:
Any arrangement of 0 to 8 queens on the board.

 Initial state:
No queen on the board.

 Successor function:
Add a queen to an empty field on the board.

 Goal test:
8 queens on the board such that no queen attacks another

 Path costs:
0 (we are only interested in the solution).

A solution:

03/19

Alternative Formulations

 Naïve formulation
 States: Any arrangement of 0-8 queens
 Problem: 64·63 ·…· 57≈ 1014 possible states

 Better formulation
 States: any arrangement of n queens (0 ≤ n ≤ 8) one

per column in the leftmost n columns such that no
queen attacks another.

 Successor function: add a queen to any square in the
leftmost empty column such that it is not attacked by
any other queen.

 Problem: 2,057 states
 Sometimes no admissible states can be found.

03/20

Example: Missionaries and Cannibals

 Three missionaries and three cannibals are on one
side of a river that they wish to cross.

 A boat is available that can hold at most two
people.

 You must never leave a group of missionaries
outnumbered by cannibals on the same bank.

Informal problem description:

 Find an action sequence that brings
everyone safely to the opposite bank.

03/21

Formalization of the M&C Problem

States: triple (x,y,z) with 0 ≤ x,y,z ≤ 3, where x,y, and
z represent the number of missionaries, cannibals and
boats currently on the original bank.

Initial State: (3,3,1)

Successor function: from each state, either bring one
missionary, one cannibal, two missionaries, two
cannibals, or one of each type to the other bank.

Note: not all states are attainable (e.g., (0,0,1)), and
some are illegal.

Goal State: (0,0,0)

Path Costs: 1 unit per crossing

03/22

Examples of Real-World Problems

 Route Planning, Shortest Path Problem

Simple in principle (polynomial problem). Complications
arise when path costs are unknown or vary dynamically
(e.g., route planning in Canada)

 Travelling Salesperson Problem (TSP)

A common prototype for NP-complete problems
 VLSI Layout

Another NP-complete problem
 Robot Navigation (with high degrees of freedom)

Difficulty increases quickly with the number of degrees
of freedom. Further possible complications: errors of
perception, unknown environments

 Assembly Sequencing

Planning of the assembly of complex objects (by robots)

03/23

General Search

From the initial state, produce all successive states step
by step search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

03/24

Implementing the Search Tree

Data structure for nodes in the search tree:

State: state in the state space

Parent-Node: Predecessor nodes

Action: The operator that generated the node

Depth: number of steps along the path from the initial state

Path Cost: Cost of the path from the initial state to the node

Operations on a queue:

Make-Queue(Elements): Creates a queue

Empty?(Queue): Empty test

First(Queue): Returns the first element of the queue

Remove-First(Queue): Returns the first element

Insert(Element, Queue): Inserts new elements into the queue

(various possibilities)

Insert-All(Elements, Queue): Inserts a set of elements into the queue

03/25

Nodes in the Search Tree

03/26

General Tree-Search Procedure

03/27

Criteria for Search Strategies

Completeness:

Is the strategy guaranteed to find a solution when there is
one?

Time Complexity:

How long does it take to find a solution?

Space Complexity:

How much memory does the search require?

Optimality:

Does the strategy find the best solution (with the lowest
path cost)?

03/28

Search Strategies

Uninformed or blind searches:

No information on the length or cost of a path to
the solution.

•breadth-first search, uniform cost search,
depth-first search,

•depth-limited search, iterative deepening
search, and

•bi-directional search.

In contrast: informed or heuristic approaches

03/29

Breadth-First Search (1)

Nodes are expanded in the order they were
produced. (fringe = FIFO-QUEUE()).

• Always finds the shallowest goal state first.

• Completeness is obvious.

• The solution is optimal, provided every action has
identical, non-negative costs.

03/30

Breadth-First Search (2)

The costs, however, are very high. Let b be the maximal
branching factor and d the depth of a solution path. Then
the maximal number of nodes expanded is

b + b2 + b3 + … + bd + (bd+1 – b) ∈ O(bd+1)

Example: b = 10, 10,000 nodes/second, 1,000 bytes/node:

Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Breadth-First Search (3)

 The BFS implementation as
shown is quite inefficient,
because it always stores the
final layer without using the
nodes!

 Change the general search
algorithm so that the goal test
is performed before the nodes
are inserted into the queue.

 This reduces the number of
expanded nodes to:
1 + b + b2 + b3 + … + bd ∈ O(bd)

03/31

03/32

Uniform Cost Search

Modification of breadth-first search to always expand the
node with the lowest-cost g(n).

Always finds the cheapest solution, given that
g(successor(n)) >= g(n) for all n.

03/33

Depth-First Search
Always expands an unexpanded node at the greatest
depth (Queue-Fn = Enqueue-at-front).

Example (Nodes at depth 3 are assumed to have no
successors):

03/34

Depth-Limited Search

Depth-first search with an imposed cutoff on the maximum
depth of a path. E.g., route planning: with n cities, the
maximum depth is n–1.

Here, a depth of 9 is sufficient (diameter of the problem).

03/35

Iterative Deepening Search (1)

 Combines depth- and breadth-first searches
 Optimal and complete like breadth-first search,

but requires less memory

03/36

Example

07/37

Iterative Deepening Search (2)
Number of expansions

Iterative Deepening Search (d)b + (d-1)b2 + … + 3bd-2 + 2bd-1 + 1bd

Breadth-First-Search b + b2 + … + bd-1 + bd

Breadth-First-Search 10 + 100 + 1,000 + 10,000 + 100,000
= 111,110

Iterative Deepening Search 50 + 400 + 3,000 + 20,000 + 100,000
= 123,450

Example: b = 10, d = 5

For b = 10, IDS expands only 11% more than the number of nodes
expanded by (optimized) breadth-first-search.

 Iterative deepening in general is the preferred uninformed search
method when there is a large search space and the depth of the
solution is not known.

03/38

Bidirectional Searches

As long as forwards and backwards searches are
symmetric, search times of O(2·bd/2) = O(bd/2) can be
obtained.

E.g., for b=10, d=6, instead of 111111 only 2222 nodes!

03/39

Problems with Bidirectional Search

 The operators are not always reversible, which makes
calculation the predecessors very difficult.

 In some cases there are many possible goal states, which
may not be easily describable. Example: the
predecessors of the checkmate in chess.

 There must be an efficient way to check if a new node
already appears in the search tree of the other half of the
search.

 What kind of search should be chosen for each direction
(the previous figure shows a breadth-first search, which
is not always optimal)?

07/40

Comparison of Search Strategies

Time complexity, space complexity, optimality, completeness

b branching factor
d depth of solution,
m maximum depth of the search tree,
l depth limit,
C* cost of the optimal solution,
∈ minimal cost of an action

Superscripts:
a) b is finite
b) if step costs not less than ∈
c) if step costs are all identical
d) if both directions use breadth-

first search

03/41

Summary

 Before an agent can start searching for
solutions, it must formulate a goal and then
use that goal to formulate a problem.

 A problem consists of five parts: The state
space, initial situation, actions, goal test, and
path costs. A path from an initial state to a
goal state is a solution.

 A general search algorithm can be used to
solve any problem. Specific variants of the
algorithm can use different search strategies.

 Search algorithms are judged on the basis of
completeness, optimality, time complexity,
and space complexity.

	Foundations of AI
	Contents
	Problem-Solving Agents
	A Simple Problem-Solving Agent
	Properties of this Agent
	Problem Formulation
	Example Problem Formulation
	Alternative Problem Formulation
	Problem Formulation for the Vacuum Cleaner World
	Problem Types: Knowledge of States and Actions
	The Vacuum Cleaner Problem as a One-State Problem
	The Vacuum Cleaner World as a Multiple-State Problem
	Folie 13
	Concepts (1)
	Concepts (2)
	Example: The 8-Puzzle
	Example: 8-Queens Problem
	Folie 18
	Alternative Formulations
	Example: Missionaries and Cannibals
	Formalization of the M&C Problem
	Examples of Real-World Problems
	General Search
	Implementing the Search Tree
	Nodes in the Search Tree
	General Tree-Search Procedure
	Criteria for Search Strategies
	Search Strategies
	Breadth-First Search (1)
	Breadth-First Search (2)
	Breadth-First Search (3)
	Uniform Cost Search
	Depth-First Search
	Depth-Limited Search
	Iterative Deepening Search (1)
	Example
	Iterative Deepening Search (2)
	Bidirectional Searches
	Problems with Bidirectional Search
	Comparison of Search Strategies
	Summary

