Introduction to Automated Planning
(Draft)

Jussi Rintanen
Albert-Ludwigs-Universiat Freiburg, Institutiir Informatik
Georges-Khler-Allee, 79110 Freiburg im Breisgau
Germany

May 25, 2006

Foreword

These are the lecture notes of the Al planning course at the Albert-Ludwigs-University Freiburg
in summer term 2005, based on earlier notes for the course in winter 2002/2003 and in summer
2004.

| would like to thank all the students who have participated in the planning course and given
comments, pointed out errors, and suggested other improvements, including Slawomir Grzonka,
Bernd Gutmann, Raimund Renner, Richard Schmidt, and Martin Wehrle.

Contents

Foreword e [
Tableofcontents ii
1 Introduction 1
1.1 Typesofplanningproblems. 2
1.2 Relatedtopics e e e 5
1.3 EarlyresearchonAlplanning 5
1.4 Thisbook e 6
2 Background 8
2.1 Transition systems e 8
2.1.1 Deterministic transitionsystems 9
2.1.2 Incidencematrices i i 10

2.2 Classical propositionallogic, 11
2.2.1 Quantified Booleanformulae 13
2.2.2 Binarydecisiondiagrams. 14
2.2.3 Algebraicdecisiondiagrams, 16

2.3 Succincttransitionsystems 17
2.3.1 Deterministic succinct transition systems 19
232 Extensions 21
2.3.3 Normal form for deterministicoperators 21
2.3.4 Normal forms for nondeterministic operators 22

2.4 Computational complexity e 23
25 EXEICISES o o e 26
3 Deterministic planning 27
3.1 State-spacesearch e 27
3.1.1 Progression and forwardsearch 28
3.1.2 Regression and backwardsearch 28

3.2 Planning by heuristic search algorithms 34
3.3 Reachability 35
3.3.1 Distances 35
3.3.2 Invariants 36

3.4 Approximations of distances 37
3.4.1 Admissible maxheuristic. oL 38
3.4.2 Inadmissible additive heuristic o000 41

CONTENTS iii

3.4.3 Relaxedplanheuristic 43
3.5 Algorithm for computing invariants, 46
3.5.1 Applications of invariants in planning by regression and satisfiability .49
3.6 Planning as satisfiability in the propositional logic 50
3.6.1 Actions as propositional formulae, 50
3.6.2 Translation of operators into propositional logic 52
3.6.3 Finding plans by satisfiability algorithms 53
3.6.4 Parallel applicationofoperators 55
3.6.5 Partially-orderedplans oo 57
3.7 Computational complexity 60
3.8 Literature L e 63
3.9 EXErCISES 65
4 Nondeterministic planning 66
4.1 Nondeterministicoperators e 66
4.1.1 Regression for nondeterministicoperators\ 66
4.1.2 Translation of nondeterministic operators into propositional logic . . .67
4.2 Computing with transition relationsas formulae 69
4.2.1 Existential and universal abstraction 69
4.2.2 Images and preimages as formula manipulation 70
4.3 Problemdefinition 74
431 Memorylessplans 74
4.3.2 Conditionalplans e 75
4.3.3 Decisionproblems16
4.4 Planning with full observability 78
4.4.1 An algorithm for constructing acyclicplans 78
4.4.2 An algorithm for constructing plans withloops 80
4.4.3 An algorithm for constructing plans for maintenance goals 83
4.5 Planning without observability L. 87
4.5.1 Planning without observability by heuristicsearch 87
4.6 Planning as satisfiability in the propositional logicand QBF 89
4.6.1 Advanced translation of nondeterministic operators into propositional |8§ic
4.6.2 Finding plans by evaluationof QBF 91
4.7 Planning with partial observability 95
4.7.1 Problemrepresentation 96
4.7.2 Complexity of basic operations 99
4.7.3 Algorithms 100
4.8 Computational complexity e 103
4.8.1 Planning with full observability 103
4.8.2 Planning without observability 107
4.8.3 Planning with partial observability 109
4.8.4 Polynomialsizeplans 114
485 Summaryoftheresults, 116
4.9 Literature e 116

5 Probabilistic planning 118

5.1 Probabilistic transitionsystems
5.2 Succinct probabilistic transition systems
5.3 Problemdefiniton L.
5.4 Algorithms for finding finite horizonplans

5.5 Algorithms for finding plans under discounted rewards

5.5.1 Evaluating the value of agivenplan
5.5.2 Valueiteration,
5.5.3 Policyiteration
5.5.4 Implementation of the algorithms with ADDs
5.6 Literature
5.7 EXErCiSes e

Bibliography

Index

CONTENTS

Chapter 1

Introduction

Planning in Artificial Intelligence islecision makingbout theactionsto be taken.

Consider an intelligent robot. The robot is a computational mechanism that takes input through
its sensors that allow the robot abserveits environment and to build representatiorof its
immediate surroundings and parts of the world it has observed earlier. For a robot to be useful it
has to be able tact A robot acts through iteffectorswhich are devices that allow the robot to
move itself and other objects in its immediate surroundings. A robot resembling a human being
has hands and feet, or their muscles, as effectors.

At an abstract level, a robot is a mechanism that maps its observations, which are obtained
through the sensors, to actions which are performed by means of the effectors. Planning is the
decision making needed in producing a sequence of actions given a sequence of observations. The
more complicated the environment and the tasks of the robot are, the more intelligent the robot
has to be. For genuine intelligence it is important that the robot is able to plan its actions also in
challenging situations.

No intelligent robots exist yet. The most intelligent existing robots carry out tasks that do not
require genuine intelligence, like transporting objects from one place to another in environments
that are predictable and known in advance. For more challenging tasks in which the working
environment of the robot is not exactly known in advance, the biggest challenges are currently in
interpreting the sensor data reliably and controlling the basic movements of the robot effectively.
Before these research problems have been solved adequately, the employment of robots for more
intelligent tasks is not feasible. When this stage will be reached some time in the future, powerful
techniques for knowledge representation and task planning will be needed to bring the intelligence
of the robots to a sufficiently high level.

Impediments for the success of Al in producing genuinely intelligent beings are related to per-
ceiving and representing knowledge concerning the world. The real world is very complicated in
all its physical and geometric as well as social aspects, and representing all the knowledge required
by an intelligent being may be too inflexible and complicated by the logical and symbolical means
almost exclusively used in artificial intelligence and in planning. This has been criticized by many
researcherfBrooks, 1991 and it is a topic of continuing scientific debate.

Al planning — like knowledge representation and learning techniques in Al in general — are
currently best applicable in restricted domains in which it is easy to identify what the atomic facts
are and to exactly describe how the world behaves. These properties are best fulfilled by systems
that are completely man-made, or systems in which planning can view the world at a sufficiently
abstract level.

2 CHAPTER 1. INTRODUCTION

world
| A

N S l

sensors effectors

sensor interpretation:
vision, speech, ...

Y

knowledge representation
learning

motion planning

task planning

Figure 1.1: Software architecture of an intelligent robot

An example of a completely man-made system to which planning techniques have successfully
been applied include the control of autonomous spacedvafscettolaet al., 1999. The vacuum
of the outer space is a very simple environment without most of the uncertainties typically present
on the surface of the earth. Other current robotic applications like delivering mail in an office or
distributing medicine in a hospital, employ only very little from the potential of Al planning.

A simple real-world application in which abstracting away the details of the real world is possi-
ble is transportation planning: how to get from Freiburg to London by public transportation, trains,
airplanes and buses. If a robot were capable of finding its way between the couple of hundred of
meters between the various forms of transportation and recognize the trains and buses to board it
could easily travel all over the world. Planning what transportation to use is an easy problem in
this case.

1.1 Types of planning problems

The wordplanningis very general and denotes many different things. Even in the Al and robotics
context there are many types of planning.

Simply controlling the basic movement of robots is a very challenging prolah. planning
is needed in finding a way for one location to another, mradion plannings needed in moving
the hands and feet of the robot to produce meaningful behavior. and they are not discussed in
this lecture as they require specialized representations of the geometric properties of the world
and cannot usually be efficiently represented in the general state-based model we are interested in.
There is also the well established research arescloédulingwhich is concerned with ordering
and choosing a schedule for executing a number of predefined actions.

The topic of this lecture is sometimes calliegk planningn order to distinguish it from the

1.1. TYPES OF PLANNING PROBLEMS 3

more concrete geometric and physical forms of planning which are used in controlling the move-
ments of robots and similar systems.

Even within task planning, there are many different types of planning problems, depending on
the assumptions concerning the properties of actions and the world that are made. Some of these
are the following.

1. Determinism versus nondeterminism.

In the simplest form of planning the state of the world at any moment is unambiguously
determined by the initial state of the world and the sequence of actions that have been taken.
Hence the world is completely deterministic.

The assumption of a deterministic world holds in many simple planning problems. However,
when the world is modeled in more detail and more realistically, the assumption does not
hold any more: the plans have to take into account events that take place independently of
the actions and also the possibility that the effects of an action are not the same every time
the action is taken, even when the world appears to be the same.

Nondeterminism comes from two different sources.

First, any feasible model of the world is very incomplete, and events that are possible as far
as our beliefs are concerned can be viewed as nondeterministic: we do not know whether
somebody is going to phone or visit us, and the visit or phone call can be modeled as a
nondeterministic event that may or may not take place.

Second, many actions themselves are by their nature nondeterministic, either intentionally
or unintentionally. Throwing two dice and summing the result has 11 possible outcomes
that cannot be predicted. Throwing an object to a garbage bin from a distance may or may
not succeed.

Note that there is still the possibility that the physical universe is completely deterministic,
but as long as we do not know the exact causes of events, we might just as well consider
them nondeterministic.

2. Observability.

For deterministic planning problems with one initial state the world is completely pre-
dictable. As the state of the world after taking certain actions can be completely predicted,
there is no need to use observations. Hence a plan, if one exists, is simply a sequence of
actions.

When the actions or the environment can be nondeterministic, or when the initial state is not
exactly known, it is not in general possible to reach the goals by using one fixed sequence
of actions. The actions have to depend on the observations.

There are two possibilities. First, planning could be interleaved with plan execution: only
one action is chosen at a time, it is executed, and based on the observations the next action
is chosen, and so on. Second, a complete plan is generated, covering all possible events
that can happen, and it is executed, without further planning during execution. This kind of
plans could be formalized as programs with conditioni<hén-els¢ and loops.

These two approaches are computationally very close, but the first approach does not require
explicitly representing all the action sequences that might be needed, it only has to find a
guarantee that such action sequences exist.

CHAPTER 1. INTRODUCTION

The possible observations have a strong impact on how exactly the actual state of the world
can be determined: the more facts can be observed, the more precisely the current state of
the world can be determined, and the better the most appropriate action can be chosen. If
there is a lot of uncertainty concerning the current state of the world it may be impossible to
choose an appropriate action.

If the current state can always be determined uniquely we halvebservability If the
current state cannot be determined uniquely we hmartial observability and planning
algorithms are forced to consider sets of possible current states.

. Time.

Most work on planning uses discrete (integer) time and actions of unit duration. This means
that all changes caused by an action at time poamé visible at time point+ 1. So changes

in the world take only one unit of time, and what happens between two time points is not
analyzed further.

More complicated models of time and change are possible, but in this lecture we consider
only discrete time. Most types of problems can be analyzed in terms of discrete time by
making the unit duration sufficiently small. Rational and real time cause conceptual dif-
ficulties. Effects of actions that are not immediate can be reduced to the basic case by
encoding the delayed effects in the state description.

. Control information and plan structure.

In the basic planning problem a plan is to be synthesized based on a generic description of
how the actions affect the world.

There may be, however, further control information that may affect the planning process and
the plans that are produced. In hierarchical planning, for example, information on the struc-
ture of the possible plans is given in the form of a hierarchical task network, and the plans
that are produced must conform to this structure. This kind of structural information may
substantially improve the efficiency of planning. Another way of restricting the structure of
plans, for efficiency or other reasons, is by using temporal ld@eschus and Kabanza,
200d.

. Plan quality.

The purpose of a plan is often just to reach one of the predefined goal states, and plans
are judged only with respect to the satisfaction of this property. However, actions may have
differing costs and durations, and plans could be assessed in terms of their time consumption
or cost.

As different executions of a plan in a nondeterministic world produce different sequences
of actions, plans can be valued in terms of their expected costs, best-case costs, worst-case
costs, and probability of eventually reaching the goals.

Plans with an infinite execution length can also be considered, and then plans may be valued
according to their average cost per unit time, or according to their geometrically discounted
costs.

1.2. RELATED TOPICS 5

1.2 Related topics

Reasoning about action has emerged as a separate research area with the goal of making inferences
about actions and their effeck&insberg and Smith, 1988; Shoham, 1988; Sandewall, 1994a;
1994b; Stein and Morgenstern, 1994mportant research topics include the qualification and

the ramification problems, which respectively involve deciding whether a certain action can be
performed to have its anticipated effects and what are the indirect effects of an action. These
problems are important because of their relation to the reasoning performed by human beings and
their importance in representing the world as required by intelligent systems employing planning.
In this lecture, however, we assume that a description of some actions is given, with all precon-
ditions and direct and indirect effects fully spelled out, and concentrate on what kind of planning
can be performed with these actions. The problems are also fully orthogonal, that is, the planning
algorithms do not need to depend on the solution to the ramification and qualification problems
that are used.

Markov decision processd®uterman, 1994in operations research is essentially a formal-
ization of planning. In contrast to Al planning, work in that area has used explicit enumerative
representations of transition systems, like those used in Section 2.1, and as a consequence the al-
gorithms have a different flavor than most planning algorithms do. However, most recent work on
probabilistic planning is based on Markov decision processes.

Discrete event systems (DES) in control engineering have been proposed as a model for synthe-
sizing controllers for systems like automated factoflRamadge and Wonham, 1987; Wonham,
1989, and this topic is closely related to planning. Again, there are differences in the problem
formulation, with state spaces being represented enumeratively or more succinctly, for example as
Petri netdIchikawa and Hiraishi, 1998r vector additions systeniki and Wonham, 1993

Synthesis of programs for reactive systems that work in nondeterministic and partially ob-
servable environments is similar to planning under same conditions. Program synthesis has been
considered for example from specifications of their input-output behavior in different types of
temporal logicgVardi and Stockmeyer, 1985; Kupferman and Vardi, 1999

1.3 Early research on Al planning

Research that has lead to current Al planning started in the 1960’s in the form of programs that
tried to simulate problem solving abilities of human beings. One of the first programs of this kind
was the General Problem Solver (GPS) by Newell and SifRonstet al,, 1969. GPS performed
state space search guided by estimated differences between the current state and the goal states.
At the end of 1960’s Green proposed the use of theorem-provers for constructinflaan,
1969. However, because of the immaturity of theorem-proving techniques at that time, this ap-
proach was soon mostly abandoned in favor of specialized planning algorithms. There was theo-
retically oriented work on deductive planning which used different kinds of modal and dynamic
logics[Rosenschein, 198but these works had little impact on the development of efficient plan-
ning algorithms. Deductive and logic-based approaches to planning gained popularity again only
at the end of the 1990’s as a consequence of the development of more sophisticated programs for
the satisfiability problem of the classical propositional Iddgiautz and Selman, 1996
One of the most well known early planning systems is the STRIPS planner from the beginning
of the 1970’4 Fikes and Nilsson, 1971 The states in STRIPS are sets of formulae, and the opera-
tors change these state descriptions by adding and deleting formulae in the sets. Heuristics similar

6 CHAPTER 1. INTRODUCTION

to the ones used in the GPS system were used in guiding the search. The definition of operators,
with a preconditionas well asadd and deletelists, corresponding to the facts that respectively
become true and false, and the associated terminology, is still in common use, although restricted
to atomic facts, that is, the add list is simply the set of state variables that the action makes true,
and the delete list similarly consists of the state variables that become false.

Starting in the mid 1970’s the dominating approach to domain-independent planning was the
so-called partial-order, or causal link, or nonlinear planrigcerdoti, 1975; McAllester and
Rosenblitt, 199], which remained popular until the mid-1990’s and the introduction of the Graph-
plan plannefBlum and Furst, 1997which started the shift away from partial-order planning to
types of algorithms that had earlier been considered infeasible, even the then-notorious total-order
planners. The basic idea of partial-order planning is that a plan is incrementally constructed start-
ing from the initial state and the goals, by either adding an action to the plan so that one of the open
goals or operator preconditions is fulfilled, or adding an ordering constraint on operators already
in the plan in order to resolve a potential conflict between them. In contrast to the forward or back-
ward search strategies in Chapter 3 partial-order planners tried to avoid unnecessarily imposing
an ordering on operators. The main advantages of both partial-order planners and Graphplan are
present in the SAT/CSP approach to planning which is discussed in Section 3.6.

In parallel to partial-order planning, the notion of hierarchical planning emei§aderdoti,

1974, and it has been deployed in many real-world applications. The idea in hierarchical plan-
ning is that the problem description imposes a structure on solutions and restricts the number of
choices the planning algorithm has to make. A hierarchical plan consists of a main task which
is decomposed to smaller tasks which are recursively solved. For each task there is a choice
between solution methods. The less choice there is, the more efficiently the problem is solved.
Furthermore, many hierarchical planners allow the embedding of problem-specific heuristics and
problem-solvers to further speed up planning.

A collection of articles on Al planning starting from the late 1960’s has been edited by Allen
et al.[199d. Many of the papers are mainly of historical interest, and some of them outline ideas
that are still in use.

1.4 This book

My intention in writing these lecture notes was to cover planning problems of different generality
and some of the most important approaches to solving each type of problem. Of course, during
the last several decades of planning research a lot of work has been done that are not covered in
these notes.

Important differences to most textbooks and research papers on planning is that | use a unified
and rather expressive syntax for representing operators, including nondeterministic and condi-
tional effects. This has several implications on the material covered in this book. For example,
it may surprising that | do not use a concept viewed very central for deterministic planning by
some researcherhie planning graphsf Blum and Fursf1997. This is a direct implication of
the general syntax for operators | use, as discussed in more detail in Section 3.8. It seems that
any useful graph-theoretic properties planning graphs have lose their meaning when a definition
of operators more general than STRIPS operators is used.

One of the messages of these notes is the importance of logic (propositional logic in our case)
for all forms of planning ranging from the simplest deterministic case to the most general types

1.4. THIS BOOK 7

of planning with partial observability. As we will see, states, sets of states, belief states and
transition relations associated with operators are often most naturally represented as propositional
formulae. This representation shows up once and again in connection with different types of
planning algorithms, including backward search in classical/deterministic planning, planning as
satisfiability, and in implementations of nondeterministic planning algorithms by means of binary
decision diagrams and similar data structures.

In addition to generalizing many existing techniques to the more general definition of planning
problems, many of the algorithms are either new or have been developed further from earlier
algorithms. | cite the original sources in the literature sections in the end of every chapter. Some
of my contributions can be singled out rather precisely. They include the following.

1.

The definition of regression for conditional and nondeterministic operators in Sections 3.1.2
and 4.1.1.

. The algorithm for computing invariants in Section 3.5. The computation of mutexes in

Blum and Furst'§1997 planning graphs can be viewed as a special case of my algorithm,
restricted to unconditional operators only.

. The algorithm for planning with full observability in Section 4.4.2. This algorithm is based

on a similar but more complicated algorithm by Cimatti efaD03.

. The representation of planning without observability as quantified Boolean formulae in Sec-

tion 4.6.

The framework for non-probabilistic planning with partial observability in Section 4.7.

. The complexity results in Section 4.8.3, most importantly the 2-EXP-completeness result

for conditional planning with partial observability.

Chapter 2

Background

In this chapter we will define the formal machinery which is needed for describing different plan-
ning problems and algorithms. We will give the basic definitions related to the classical proposi-
tional logic and the transition system model which is the basis of most work on planning and which
is closely related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systenis a 5-tuplell = (S, I, O, G, P) where
1. Sis afinite set of states,
. I C S isthe set of initial states,
. O is afinite set of actions C S x 5,

2
3
4. G C Sis the set of goal states, and
5

. P = (Cy,...,Cy) is a partition of S to non-empty classes of observationally indistin-
guishable states satisfying{C1,...,C,} = S andC; N C; = 0 for all 4, such that
1<i<y<n.

Making an observation tells which sé€t} the current state belongs to. Distinguishing states
within a givenC; is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbemn of components in the partitioR determines different classes of planning prob-
lems with respect to observability restrictions. nlf= |S| then every state is observationally
distinguishable from every other state. This is cafidtobservability If n = 1 then no observa-
tions are possible and the transition systemriebservableThe general case € {1,...,|S|}is
calledpartial observability

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states asmg,(s) = {s’ € S|sos'} and (weak)preimagesf states aspreimg,(s’) =
{s € S|sos’}. Generalization to sets of statesinisg, (1) = J,.pimg,(s) andpreimg,(T) =

8

2.1. TRANSITION SYSTEMS 9

User Preimg,(s). For sequences, ..., o, of actionsimg,,. ..., (T') = img,,, (- --img,, (T) - - -)
andpreimg,,, (T") = preimg, (- - -preimg,, (T) - - -). Thestrong preimagef a setl’ of states
is the set of states for which all successor states afg defined aspreimg(7) = {s € S|s' €
T, sos',img,(s) C T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leb be any action and' and S’ any sets of states.

1. spreimg(7") C preimg,(T")

2. img,(spreimg (7)) C T

3. f T C T'thenimg(T) C img,(T").

4. preimg,(T'UT") = preimg,(T") U preimg,(7”).

5. s’ €img,(s) if and only ifs € preimg,(s).
Proof:

1. spreimg(T) = {s € S|s' € T, sos',imgy(s) CT} C {s € S|s'" € T,s05'} = Uyep{s €
S|sos'} = Uy er Preimg,(s’) = preimg, (7).

2. Take anys’ € img,(spreimg(7’)). Hence there is € spreimg(7) so thatsos’. As
s € spreimg(T), img,(s) C T'. Sinces’ € img,(s), s’ € T.

3. AssumeT C T" ands’ € img,(T). Hencesos’ for somes € T by definition of images.
Hencesos’ for somes € T" becausd’ C T". Hences’ € img,(7") by definition of images.

4. preimg,(TUT") = Uyerur s € Slsos’} = Ugep{s € Slsos'}UUy e {s € Slsos'} =
preimg,(7") U preimg,(T")

5. s €img,(s) iff sos’iff s € preimg,(s).

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition system a 4-tuplell = (S, I, O, G) where
1. Sis afinite set of states,
2. I € Sisthe initial state,
3. O is afinite set of actions C S x S that are partial functions, and

4. G C Sisthe set of goal states.

10 CHAPTER 2. BACKGROUND

/—VB ABCDEF
A \ Al01T 0000
Bl00OO0OOO 1

D Ccloo1000

DI001000

F E E[01 0000
~_ 7 FlO0OO0OO0T10

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

That the actions are partial functions means that forsaayS ando € O there is at most one
states’ such thatsos’. We denote the unique successor statef a states in which operaton
is applicable by’ = app,(s). For sequences;; . ..; o, of operators we definapp,,, (s) as

app,,, (- - appy, (s) - - -).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence mafr{eeffacency
matrices) in which the element in roinand columnj indicates whether a transition from state
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM, ..., M,, which represent the transition relations of actiens. .., a, the
combined transition relation i&/ = My + My + --- + M,,. The matrix)M now tells whether a
state can be reached from another state by at least one of the actions.

Here-+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined a$) + 0 = 0, andb + ¥ = 1if b = 1 or &’ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actignand thena, is M7 Ms. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairs s’ of states whethey’' is reachable frons by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.
Then define

RO = In><n
Ri=Ri1+MR; for ¢ > 1.

Heren is the number of states ard.,, is the unit matrix of size:. By Tarski’s fixpoint theorem
R; = R; for some: > 0 and allj > 7 because of the monotonicity property that every element
that is 1 for somé is 1 also for allj > i. Matrix R; = M°UM*!U---UM? represents reachability

2.2. CLASSICAL PROPOSITIONAL LOGIC 11

O O O ofloo

o o ool
o o o ollo|lolly
oo~ OO
coc oo o~
coc oo o o0
— oo ooy
= N eNeNoNolles|
oo oo ol
Il
OO R MR, OO
oo oo ool
c oo oo o0
coc oo oy
— oo oo ol
O R OO O~

o~ o ool

— o o ollollolm

o o o ool
X

RESESES! IS
MmO QW
RISESES IS

Figure 2.2: Matrix product corresponds to sequential composition.

!
A)\‘\D
F_/E

Figure 2.3: A transition graph and the corresponding maditfix

MmO QW

N oNeNoNoNel N
o~ oo o r~lm
co R~ oo
c o oo ooy
— o oo ooy
oo oo ol

by i actions or less.

2.2 Classical propositional logic

Let A be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. Foralla € A, a is a propositional formula.
2. If ¢ is a propositional formula, then so-igp.
3. If ¢ and¢’ are propositional formulae, then sodis/ ¢'.
4. If ¢ and¢’ are propositional formulae, then sodis\ ¢'.

5. The symbolsL and T, respectively denoting truth-values false and true, are propositional
formulae.

The symbols\, v and— areconnectivegespectively denoting thenjunction disjunctionand
negation We define the implicatiod — ¢’ as an abbreviation for¢ \V ¢’, and the equivalence
¢ «— ¢ as an abbreviation fdip — ¢') A (¢' —).

A valuation of A is a functionv : A — {0,1} where 0 denotes false and 1 denotes true.
Valuations are also known assignmentsr models For propositional variables € A we define

12 CHAPTER 2. BACKGROUND

e ¢ ABCDEF
A A0 10001
\\ b Bl000O0T11
Ccloo1000

2 E Dloo 1000
\kzj71 El01 0001
Fl010010

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrix M + M?

e c ABCDEF
A \\ A0100 11
\\ b Bl010011
cloo1000

F E:) D001000
<O\§ij7i El010011
FlO10011

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrix M + M? + M3

v = aifand only ifv(a) = 1. A valuation of the propositional variables ihcan be extended to
a valuation of all propositional formulae ovdras follows.

1. v = ¢ ifandonly ifv [~ ¢

2. vEg¢Vv ¢ ifandonlyifv = ¢orv | ¢
.vE¢A¢ ifandonlyifv = ¢ andv = ¢
4. 0vET

5. vl L

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulap is satisfiable(consistent if there is at least one valuatianso that
v | ¢. Otherwise it isunsatisfiable(inconsistent A finite set ' of formulae is satisfiable if
/\¢€F ¢ is. A propositional formulap is valid or atautology if v = ¢ for all valuationsv. We
denote this by= ¢. A propositional formulap is a logical consequenaeaf a propositional formula
¢, written ¢’ = ¢, if v = ¢ for all valuationsv such thaty = ¢’. A propositional formula that

2.2. CLASSICAL PROPOSITIONAL LOGIC 13

is a proposition variable or a negated propositional variabte for somea € A is a literal. A
formula that is a disjunction of literals &sclause

A formula ¢ is in negation normal form(NNF) if all occurrences of negations are directly
in front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan ruleg¢ V ¢') = =p A ¢’ and—(p A ¢') = ¢V =¢/, the double
negation rule-—¢ = ¢. A formula¢ is in conjunctive normal forndCNF) if it is a conjunction of
disjunctions of literals. A formula@ is in disjunctive normal fornfDNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variab{@gantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If ¢ is aformula andi € A, thenVa¢ is a formula.

7. If pisaformula and € A, thendag is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a € AinaQBF is in the scope of eithér or Va.

Define ¢[y /x| as the formula obtained from by replacing occurrences of the propositional
variablez by .

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
T and_L. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectjivesnd —.

Definition 2.4 (Truth of QBF) A formula3z¢ is true if and only if¢[T /z] V ¢[L/x] is true.
(Equivalently, if¢[T /z] is true or¢[L /x] is true.)

A formulavz¢ is true if and only if¢[T /x] A ¢[L/x] is true. (Equivalently, ifp[T /z] is true
and¢[L /x] is true.)

A formulag with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only i is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae/z3y(x < y) and3xTJy(x A y) are true.
The formulaedaVy(z < y) andVzVy(x Vv y) are false. [|

Note that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for exarple: vy, y2¢.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
completd Meyer and Stockmeyer, 19¥,2nd many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NEEPSPACE) can be efficiently translated into QBF.

14 CHAPTER 2. BACKGROUND

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains both and—p for some propositiop.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very use-
ful in various types of reasoning needed in planning and other related areas, like model-checking
in computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (BOQBs)ant, 1992. Other
normal forms of propositional formulae that have found use in Al and could be applied to planning
include the decomposable negation normal f¢Barwiche, 2001 which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation af-bit multipliers has a size exponential in Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublitimes is exponential im and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verifid@imah
et al, 1994, Clarkeet al, 1994, and in recent years these same techniques have been applied to
Al planning as well. We will discuss BDD-based planning algorithms in Chapter 4.

2.2. CLASSICAL PROPOSITIONAL LOGIC 15

Figure 2.6: A BDD

BDDs are expressed in terms of the ternary Boolean operator if-theitelsep, , ¢2) defined
as(pA¢1)V (—pAg2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constaraad_L. Figure 2.6 depicts a BDD for
the formula(A v B) A (B v C). The normal arrow coming from a node fér corresponds to
the case in whiclP is true, and the dotted arrow to the case in whitts false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of
an equivalence called the Shannon expansion.

¢ = (pAQ[T/p))V (=0 A @[L/p]) = ite(p, ¢[T/pl, o[/p])

Example 2.6 We show how the BDD fofA Vv B) A (B Vv C) is produced by repeated application
of the Shannon expansion. We use the variable ordeting, C and use the Shannon expansion
to eliminate the variables in this order.

(AVB)AN(BVC(C)
ite(A,(TVB)A(BVC),(LVB)A(BV())
ite(A, BV C, B)

ite(A,ite(B, TV C,LVvC),ite(B, T,1))
ite(A,ite(B, T,C),ite(B, T, 1))
ite(A,ite(B, T,ite(C, T, L)), ite(B, T, 1))

The simplifications in the intermediate steps are by the equivalehces = T and L V ¢ = ¢
andT A¢g=¢andl A ¢ = 1. When

ite(A,ite(B, T,ite(C, T, 1)),ite(B, T, 1))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 correspondsTaand the terminal node O to. |

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunctiom and the disjunctiory of two BDDs, and forming the negation of a

16 CHAPTER 2. BACKGROUND

BDD. However, conjunction and disjunction @fBDDs may have a size that is exponentiahin
as adding a new disjunct or conjunct may double the size of the BDD.
An important operation in many applications of BDDs is the existential abstraction operation
Jp.¢, which is defined by
.0 = o[T/p] vV ¢[L/p]

where¢[y)/p] means replacing all occurrencespah ¢ by . Also this is computable in polyno-
mial time, and in contrast to repeated conjunction and disjunction, repeated existential abstraction
of several variables remains a polynomial time operation. Existential abstraction can of course be
used for any propositional formulae, not only for BDDs.

The formulag’ obtained fromyp by existentially abstracting is in general not equivalent o,
but has many properties that make the abstraction operation useful.

Lemma 2.7 Let¢ be a formula ang a proposition. Lety = Ip.¢p = ¢[T /p] vV ¢[L/p]. Now the
following hold.

1. ¢ is satisfiable if and only i§’ is.

2. ¢ isvalid if and only if¢’ is.

3. If x is a formula without occurrences pf then¢ = x if and only if¢’ |= x.
Example 2.8

IB.((A—B) A (B—C))
=(A=THA(T=C)V(A-L)A(L=0))

JAB.(AVB)=3B(TVB)V(LVB)=(TVT)V(LVT)V{(TVL)V(LVL)

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADD§Fujita et al., 1997; Bahaet al,, 1997 are a generalization

of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ARRssigns the value;
and ADD B assigns the value,, then the product ADDA - B assigns the value, - 5 to the
valuation.

The following are some of the operations typically available in implementations of ADDs.
Here we denote ADDs by andg and view them as functions from valuationso real numbers.

2.3. SUCCINCT TRANSITION SYSTEMS 17

(b)
Figure 2.7: Three ADDs, the first of which is also a BDD.

operation notation meaning
sum f+g (f+9)(@) = f(z) +g(x)
product f-g (f-9)(@) = f(z) g(x)

maximization max(f,g) (max(f,g))(x)=max(f(x),g(zx))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Themrithmetic existential abstractioof f, written
Jp.f, is an ADD that satisfies the following.

Gp-f)(x) = (FIT/pD) (@) + (f[L/p])(2)

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a detf Boolean state variables which take the valtras or
false Eachstateis a valuation of4 (a functions : A — {0,1}.)

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.9 Let A be a set of state variables. Aperatoiis a pair (c, e¢) wherec is a proposi-
tional formula overA (the preconditior), ande is aneffectover A. Effects overd are recursively
defined as follows.

18 CHAPTER 2. BACKGROUND

set formula
TUU TVU
TnU TANU
T -T
U TN-U
0 1

the universal set T

guestion about setbquestion about formulae

TCU? ET0U7?
TCcU? ET—UandEU—T?
T=U? =T o U?

Table 2.1: Correspondence between set-theoretical and logical operations

1. a and—q for state variables: € A are effects oveH.

2. e1 N+ ANeyisaneffectover if eq, . .., e, are effects over (the special case with = 0
is the empty effect).

3. ¢ > eis an effect oveH if cis a formula overd ande is an effect over.
4. eq|---|en is an effect over if ey, ..., e, for n > 2 are effects over.

The compound effects; A - - - A e, denote executing all the effeats, . . ., e, simultaneously.
In conditional effects: > e the effecte is executed ifc is true in the current state. The effects
e1|---|en denote nondeterministic choice between the effects. ., e,. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.10 (Operator application) Let (c,e) be an operator overA. Lets be a state (a
valuation ofA). The operator ispplicable ins if s = c and every seE € [e], is consistent. The
set[e]; is recursively defined as follows.

1. [a]s = {{a}} and[~a], = {{-a}} fora € A.
2. Je1 A Aenls = {UNy BilB1 € [edss -, B € [en]s).
3. [>els=le]sif s = and[d > €], = {0} otherwise.
4. ler] - len]s = lea]s U -+ Ulen]s

An operator{c, e) induces a binary relatio(c, e) on states as follows: statesinds’ are related
by R{c,e) if s = c ands’ is obtained froms by making the literals in som& € [e], true and
retaining the values of state variables not occurringtin

We define images and preimages for operatangerms ofR(o), for instance byreimg,(s) =
preimgg,)(s).

Definition 2.11 A succinct transition systei a 5-tuplell = (A, I,0, G, V) where

2.3. SUCCINCT TRANSITION SYSTEMS 19

[EEN

. A is a finite set of state variables,

2. I is aformula overA describing the initial states,

3. O is afinite set of operators ovet,

4. GG is a formula overA describing the goal states, and
5. V C A isthe set of observable state variables.

Succinct transition systems wilh = A arefully observableand succinct transition systems
with V' = () are unobservable Without restrictions orl” the succinct transition systems are
partially observable

We can associate a transition system with every succinct transition system.

Definition 2.12 Given a succinct transition systeth = (A, 7,0, G, V), define the transition
systen¥ (IT) = (S, I’,0',G', P) where

1. Sis the set of all Boolean valuations df
2. I'={s e S|s =1},

3. 0' = {R(0)|o € O},

4. G' ={se S|s EG},and

5. P = (Cy,...,C,) wherevy, ..., v, for n = 2IVI are all the Boolean valuations df and
C; ={s € S|s(a) =vi(a) foralla € V}forallic {1,...,n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrenceg of the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.13 (Operator application) Let{(c, ¢) be a deterministic operator ovet. Lets be a
state (a valuation ofd). The operator isapplicable ins if s |= ¢ and the sefe]?*! is consistent.
The sefe]?! is recursively defined as follows.

1. [a]9¢t = {a} and[-a]9*! = {-a} for a € A.
2. [er Ao A%t = U [e] 9.

s

3. [¢ > e]dt = [e]% if s |= ¢ and[c > e]?¢t = () otherwise.

A deterministic operatofc, e) induces a partial functior?(c, e) on states as follows: two states
s and s’ are related byR({c, e) if s |= c ands’ is obtained froms by making the literals irje] ¢
true and retaining the truth-values of state variables not occurring]gf’.

20 CHAPTER 2. BACKGROUND

We defineapp,(s) = s’ by sR(0)s’ andapp,,....o,(s) = s’ by app,,,(...apm,(s)...), just
like for non-succinct transition systems.
We formally define deterministic succinct transition systems.

Definition 2.14 A deterministic succinct transition systesm 4-tuplell = (A, I, O, G) where
1. Ais afinite set of state variables,
2. T'is aninitial state,
3. O s afinite set of operators ovet, and
4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.15 Given a deterministic succinct transition systém= (A, I, O, G), define the
deterministic transition systei(II) = (S, I, 0’, G’) where

1. Sis the set of all Boolean valuations df
2. O' ={R(o0)|o € O}, and
3. G'={seS|sE=G}.

A subclass of operators considered in many early and recent works resBTdRI® Dperators.
An operator(c, e) is a STRIPS operator ifis a conjunction of state variables ani$ a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.16 Let A = {a4, ..., ay,} be the set of state variables. let (T, ¢) where
e= (a1 > —a1) A(mar > ap) A A(an > —ap) A (Dap > ay)).

This operator reverses the values of all state variables. As its set of active gff¢étis different
in every one oR" states, this operator correspond2tcSTRIPS operators.

00 = (mayp A—ag A -+ A=ap,a1 Aag A -+ A ap,)

01 = (ag A—ag A+ AN —ap,—ag Aag A« A ap)

02 = (may Nag A+ AN —ap,a1 A=ag A« A ay)

(ag Nag A\ -+ AN =ap,—a; A—ag A A ay)

03 =

om_1 = {ag Nag N+ N ap,na1 A—ag -+ A —ap)

2.3. SUCCINCT TRANSITION SYSTEMS 21
>(er A Nep) = (c>er) AN A(cD> ep) (2.1)

> (ca>e) = (g Neg) > (2.2)

(c1 > e) (ca>e)=(c1Ver)>e (2.3)

ANc>e)=e (2.4)

e=TrD>e (2.5)

e1 N\ (ea Nes) = (e1 Nea) ANes (2.6)

e1 Ney = eg A e (2.7)

c>T =T (2.8)

eNT =e (2.9)

Table 2.2: Equivalences on effects

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositioof effects. Ife ande’ are effects, then alsg ¢’ is an effect that corresponds

to first executing: and there’. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality > and with only atomic effects as antecedents of conditionals> e. Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.13 are straightforward. An effeetis equivalent toT A e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences afsideA so that the consequents
of > are atomic effects.

Definition 2.17 A deterministic effect is in normal formif it is T or a conjunction of one or
more effects: > a and c > —a with at most one occurrence of atomic effecind —a for any
a € A. An operator(c, e) is in normal form ife is in normal form.

Theorem 2.18 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the efteof the operatokc, e).

Induction hypothesis: the effeetcan be transformed to normal form.

Base case k, = T: This is already in normal form.

22 CHAPTER 2. BACKGROUND

Base case & = a ore = —a: An equivalent effect in normal form i$ > e by Equivalence
2.5.

Inductive case le = ey A ey: By the induction hypothesis; andes can be transformed into
normal form, so assume that they already are. If ong @inde, is T, by Equivalence 2.9 we can
eliminate it.

Assumee; containse; > [for some literal andes containsey > . We can reorded; Aes with
Equivalences 2.6 and 2.7 so that one of the conjundts is- I) A (c2 >). Then by Equivalence
2.3 it can be replaced bl Vv ¢2) > . Since this can be done repeatedly for every litérale
can transforne; A eg into normal form.

Inductive case 2¢ = z > e;: By the induction hypothesis; can be transformed to normal
form, so assume that it already is.

If e1is T, e can be replaced by which is in normal form.

If e; = 2’ > ey for somez’ andes, thene can be replaced by the equivalent (by Equivalence
2.2) effect(z A ') > e2 in normal form.

Otherwise e, is a conjunction of effects > [. By Equivalence 2.1 we can moweanside the
conjunction. Applications of Equivalences 2.2 transform the effect into normal form.

In this transformation the conditionsin ¢ > e are copied into front of the atomic effects.
Let m be the sum of the sizes of all the conditiansand letrn. be the number of occurrences of
atomic effects: and—a in the effect. An upper bound on size of the new effedigm) which
is polynomial in the size of the original effect. 0

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to hondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentsof conditional effects: > e are atomic effects.

Definition 2.19 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is T or a conjunction of one or more effects> a andc¢ > —a with at most one
occurrence ofi and—a for anya € A.

A nondeterministic effect is in normal form if itég| - - - |e,, or e; A - - - A e, for effectse; that
are in normal form.

A nondeterministic operatafe, e) is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.20 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.18. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. O

Example 2.21 The effect
at> (bl(c A f)) A ((dNe)|(br>e))

2.4. COMPUTATIONAL COMPLEXITY 23

c> (e1]-len) = (e>er)] - |(c>ep) (2.10)
eN(er]---len) = (eNer)| (e Nep) (2.11)

(eh] -~ lep)leal -+ len = €] -~ lelea] - len (2.12)
(€ A(c>er))lea] - len = (e> ((e' Aer)lea] -+ |en)) A (e > (ea] - len)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

in normal form is
((a>b)|((a>c)Alar [)) AT >d)A(T > e))|(b>e)).

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.22 (Normal form Il for nondeterministic operators) A deterministic effectis in nor-
mal formal Il if it is T or a conjunction of one or more effect$> a andc > —a with at most one
occurrence of; and—a for anya € A.

A nondeterministic effect is in normal form Il if it is of foreq| - - - |e,, wheree; are determin-
istic effects in normal form .

A nondeterministic operatd(, e) is in normal form Il ife is in normal form 1.

Theorem 2.23 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.20 there is an equivalent operator in normal form. The transformation
further into normal form Il requires equivalences 2.11 and 2.12. O

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbf®disazaret al, 1988;
1990; Papadimitriou, 1994

The definition of ATMs we use is like that of Balezar et al[1990 but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMSs) are a special case of
alternating Turing machines.

Definition 2.24 Analternating Turing machinis a tuple(X, Q, 9, qo, g) where
e Y is a finite alphabet (the contents of tape cells),

e () is afinite set of states (the internal states of the ATM),

24 CHAPTER 2. BACKGROUND

e §is a transition functiory : Q x (X U {|,0}) — 2D *Q@x{LN.R}
e ¢ is the initial state, and
e g:@Q — {V,3,acceptreject} is a labeling of the states.

The symbols| andJ, the end-of-tape symbol and the blank symbol, in the definition of
respectively refer to the beginning of the tape and to the end of the tape. It is required-that
andm = R for all (s,¢’,m) € d(q,|) for anyq € Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape syrmby not be changed. Fere ¥ we
restricts’ in (s, ¢',m) € §(q,s) to s’ € X, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Note that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM idq, o, ¢’) whereq is the current state;, is the tape contents left of
the R/W head with the rightmost symbol under the R/W head cdnslthe tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM. The configuration is universat)if g(q) = ¥, and existentialy) if g(¢) = 3.

The computation of an ATM starts from the initial configuratin, |a, o) whereao is the
input string of the Turing machine. Belowndenotes the empty string.

Successor configurations are defined as follows.

1. A successor ofq,ca,0’)is (¢, o,d'd’) if (d/,¢', L) € §(q,a).
2. A successor ofq,ca,d’) is (¢/,od’, o) if (d',q',N) € 6(q,a).
3. Asuccessor ofq, ca, ba’) is (¢, 0a’b,o’) if (d/,¢', R) € §(q,a).
4. A successor ofq, oa, €) is (¢, od'0, €) if (a’,¢', R) € §(q,a).

We write(q, o) F (¢, o’} if the latter is a successor configuration of the former. A configuration
(q,0,0") of an ATM isfinal if g(q) = accept ory(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is 0-acceptinggfq) = accept. A non-final universal configuration
is n-accepting forn > 1 if its every successor configurationsis-accepting for somen < n
and one of its successor configurationsa is 1-accepting. A non-final existential configuration is
n-accepting fom > 1 if at least one of its successor configurations is 1-accepting and it has
no m-accepting successor configurations for amy< n — 1. Finally, an ATM accepts a given
input string if its initial configuration is-accepting for some > 0. A configuration isaccepting
if it is n-accepting for some > 0.

If an ATM accepts a given input string, then we can defineaccepting computation subtree
of the ATM and the input string as a sEtof accepting configurations such that

1. the initial configuration is iff’,
2. if ¢ € T is aV-configuration ther’ € T for all configurations’ such that + ¢/,

3. if ¢ € T is ann-accepting3-configuration ther’ € T for at least one’ such that + ¢
andc’ is m-accepting for somer < n.

2.4. COMPUTATIONAL COMPLEXITY 25

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM withd (g, s)| = 1 forall ¢ € Q ands € X.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input length. Formally,

PSPACE= |_J DSPACHn").
k>0

Other complexity classes are similarly defined in terms of the time consumption on a determin-
istic Turing machine (DTIMEf(n)), time consumption on a nondeterministic Turing machine
(NTIME(f(n)), or time or space consumption on alternating Turing machines (ATVB(or
ASPACE(f(n))) [Balcazaret al., 1988; 1990.

P = U>o DTIME(n%)

NP = ;o NTIME (n¥)

EXP = (J,, DTIME (2"")
NEXP = [J,-o NTIME(2"")
EXPSPACE= | J,., DSPACH2"")
2-EXP = U~ DTIME(22"k)
2-NEXP = U, NTIME(22"k)

k

APSPACE= |, ASPACEn")
AEXPSPACE= |-, ASPACE2"")

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machiné§handrzet al., 1981, for example

EXP = APSPACE
2-EXP = AEXPSPACE

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, the proofs of membership of a given computational problem in a certain
complexity class are usually given in terms of a program in a simple programming language com-
parable to a small subset of C or Java, instead of giving a formal description of a Turing machine
because the latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timenany-one reduciblé it; that is, for all problemd.” € C there is a function

26 CHAPTER 2. BACKGROUND

fr that can be computed in polynomial time on the size of its inputfan@:) € L if and only if
x € L' for all inputsz. We say that the functiorf; is a translation fronZ.’ to L. A problem is
C-completdf it belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweertractableandintractable problems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important that
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the
problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the fallowing.

class \ complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)

PSPACE| truth-value of quantified Boolean formulae
Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986

2.5 Exercises

2.1 Show that any transition system in which the states are valuations ofAaafgiropositional
variables can be translated into an equivalent succinct transition system.

2.2 Show that conditional effects with are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects with>. Hint: There is an example with two states and one state variable.

For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.

Chapter 3

Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after any sequence of actions is exactly
predictable. The problem instances in this chapter are deterministic succinct transition systems as
defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial Gtata goal statg € G

for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high?® = 1048576 ~ 10° for 20 Boolean state variables and

230 = 1073741824 ~ 10 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmare A«, IDAx and their variantfHartet al, 1968; Pearl, 1984;

Korf, 1989 which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

27

28 CHAPTER 3. DETERMINISTIC PLANNING

3.1.1 Progression and forward search

We have already defingmogressiorfor single states asapp,(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats = G is found a plan is guaranteed to exist: it is the sequence of operators with
which the state is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional forrauthat describes the set of goal

states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true

in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is caigtession Regression is more powerful

than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition ERE) of literal [made true when an operator with the
effecte is applied recursively as follows.

EPG(T) = L
EPG() =T
EPG(!") = L whenl # 1" (for literals)
EPG(e1 A---ANey) = EPG(er) V--- VEPG(ep)
EPG(c>e) = c NEPG(e)

The cas&PG(e; A---Ney) = EPG(e1) V- - - VEPG(e,) is defined as a disjunction because
it is sufficient that at least one of the effects makésie.

Definition 3.2 Let A be the set of state variables. We define the condition;&R®©f operator
o = (c,e) being applicable so that literal is made true ag A EPG(e) A A, c4 ~(EPGi(e) A
EPC..(e)).

For effectse the truth-value of the formul&PG (e) indicates in which statekis a literal to
which the effect assigns the value true. The connection to the earlier definitide] %f is stated
in the following lemma.

Lemma 3.3 Let A be the set of state variablesa state onA4, [a literal on A, ando and operator
with effecte. Then

1. 1 € [e]% if and only ifs = EPG(e), and

2. app,(s) is defined and € [e]?¢ if and only ifs = EPG (o).

3.1. STATE-SPACE SEARCH 29

Proof. We first prove (1) by induction on the structure of the effect
Base case 1 = T: By definition of [T]4¢* we havel ¢ [T]%! = (), and by definition of
EPG(T) we haves [~ EPG(T) = L, so the equivalence holds.
Base case 2, = I: [€ [l]9¢* = {I} by definition, ands = EPG (/) = T by definition.
Base case 3, = I’ for some literal’ # I: I ¢ [I')%* = {I'} by definition, ands [~ EPG (') =
1 by definition.
Inductive case Ig = e1 A --- Aey:
1€ le]d ifandonlyif 1€ [¢/]9 for somee’ € {e1,..., e}
ifand only if s = EPG(e’) for somee’ € {ey,...,e,}
ifand only if s = EPG(e;)V---VEPG(en)
ifandonly if s} EPG(e1 A--- Aep).
The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions of EPG (e) and[e]?** as well as elementary facts about propositional formulae.
Inductive case 2 = ¢ > ¢’:
l€[c>e]d ifandonlyif 1€ [¢/]% ands = ¢
ifand only if s = EPG(e') ands = ¢
ifand only if s = EPG(cr> ¢).
The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsand A\ .. , ~(EPG,(e) A EPC.4(e)) in EPG(0)
exactly state the applicability conditions af O

Note that any operatdr;, e) can be expressed in normal form in term&E®6fC, (e) as

<c, /\ (EPGu(e) > a) A (EPCoy(e) > ﬁa)> .

a€A

The formulaEPG,(¢) V (a A =EPC_,(e)) expresses the condition for the trutke A after the
effecte is executed in terms of truth-values of state variables before: eitbecomes true, ar
is true before and does not become false.

Lemma 3.4 Leta € A be a state variabley = (c,e¢) € O an operator, ands ands’ = app,(s)
states. Ther = EPG,(¢) V (a A “\EPC.,(e)) if and only ifs’ = a.

Proof: Assume that = EPG,(e) V (a A =EPC.,(e)). We perform a case analysis and show that
s’ = a holds in both cases.

Case 1: Assume that= EPGC,(e). By Lemma 3.3 € [e]?°!, and hence’ |= a.

Case 2: Assume that= a A ~EPC.,(e). By Lemma 3.3-a ¢ [e]9!. Henceu is true ins’.

For the other half of the equivalence, assume thgt EPC,(e) V (a A =EPC_,(e)). Hence
s = —EPGy(e) A (ma VvV EPC.4(e)).

Case 1: Assume that= a. Now s = EPC_,(e) because = —a v EPC.,(e), and hence by
Lemma 3.3-a € [e]?! and hence’ = a.

Case 2: Assume thatl= a. Sinces = ~EPG,(e), by Lemma 3.3 ¢ [e]9¢! and hence’ [~ a.

Therefores’ |~ a in all cases. O

The formulaeEPG (e) can be used in defining regression.

30 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.5 (Regression)Let ¢ be a propositional formula and = (c,e) an operator. The
regressiomf ¢ with respect t@ is regr, (¢) = ¢ AcAx wherex = A, 4 ~(EPCi(e)AEPC_,(¢))
and ¢, is obtained fromyp by replacing every. € A by EPG,(e) V (a A “=EPC_,(e)). Define
regr.(¢) = ¢» A x and use the notation regy. ., (¢) = regr,, (- - -regr,, (¢) - - -).

The conjuncts ofy say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whidh false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula ERG v (—a A -EPG,(e)) which tells
whena is false. The negation of this formula, which can be writteiERG, (e) A -EPC_,(e)) V

(a N =EPC_,(e)), is not equivalent to EPCZe) vV (a A “EPC_,(e)). However, if EPG(e) and
EPC_,(e) are not simultaneously true, we do get equivalence, that is,

~(EPC,(¢) AEPC.4(e)) = ((EPGy(¢) A ~EPC.4(¢)) V (a A =EPC.4(¢))
— (EPC,(e) V (a A =EPC_4(e)))

because~(EPGC,(e) A EPC.,(e)) = (EPGy(e) A =EPC.4(e)) «» EPG,(e).

An upper bound on the size of the formula obtained by regression with opeeators, o,,
starting from¢ is the product of the sizes @f o4, ..., 0,, Which is exponential im. However,
the formulae can often be simplified because there are many occurrencesdfL, for example
by using the equivalencésA¢ = ¢, LA¢ =L, TVe=T,1LVve=¢,~L=T,and-T = L.

For unconditional operators, . . ., o, (with no occurrences a#), an upper bound on the size of
the formula (after eliminating” and_l) is the sum of the sizes of, .. . , 0,, and¢.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor statesetfod states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let ¢ be a formula overA, o an operator overA, and S the set of all states i.e.
valuations ofA. Then{s € S|s = regr,(¢)} = {s € S|app.(s) = ¢}.

Proof: We show that for any state s |= regr,(¢) if and only if app,(s) is defined andpp,(s) &=
¢. By definitionregr, (¢) = ¢, AcAx for o = (¢, e) whereg, is obtained fromp by replacing every
state variable. € A by EPC,(e) V (a A -EPC,(e)) andx = A, c4 ~(EPG,(e) AEPC.4(e)).

First we show that = ¢ A x if and only if app,(s) is defined.

sEcAy iff s|=cand{a,—~a} Z [e] forallac A byLemma 3.3
iff app.(s) is defined by Definition 2.13.

Then we show that = ¢, if and only if app,(s) = ¢. This is by structural induction over
subformulaep’ of ¢ and formulaep!. obtained fromy’ by replacinga € A by EPG,(e) V (a A
—EPC.(e))

Induction hypothesiss |= ¢!, if and only ifapp,(s) = ¢'.

Base case 1y = T: Now ¢/. = T and both are true in the respective states.

Base case 2y = L: Now ¢/. = L and both are false in the respective states.

Base case 3} = a for somea € A: Now ¢, = EPGC,(e) V (a A =EPC_,(e)). By Lemma 3.4

s = ¢, ifand only ifapp,(s) = ¢'.

3.1. STATE-SPACE SEARCH 31

Inductive case 1’ = —6: By the induction hypothesis = 0, iff app,(s) = 6. Hences = ¢..
iff app,(s) = ¢’ by the truth-definition of-.

Inductive case 2’ = 0 v §’: By the induction hypothesis |~ 0, iff app,(s) = 6, ands = 6.,
iff app,(s) = 6. Hences |= ¢/, iff app,(s) | ¢’ by the truth-definition of/.

Inductive case 3p' = 6 A 0’: By the induction hypothesis = 0, iff app,(s) = 6, ands = 0.,
iff app,(s) = 6. Hences |= ¢/, iff app,(s) | ¢’ by the truth-definition of\. O

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulavith the effect-a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regeesgim¢he operatotb, c)
yieldsregr, » (a) = a A b. Finding a plan for reaching a state satisfying easier than finding a
plan for reaching a state satisfying\ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Letthere be aplany,. .., o, for (A, 1,0,G). Ifregr,, .. .o, (G) = regr,, . ;....0, (G)
for somek € {1,...,n — 1}, then alsw;,...,05_1,0%+1,...,0n iSaplanfor(A, 1,0, G).

Proof: By Theorem 3.7app,, . ;;....0, (8) = G for any s such thats = regr,, ..., (G). Since
ap%l;--~§0k—1 (I) ’: regrok;-..;on (G) andregrok;..‘;on (G) ‘: regr0k+1;...;0n (G) alsoapp?l;--‘;ok71 (I) |:
reglo, 1;...;0n (G) Henceappn;---;Ok_1;0k+1;---;0n (I> ': G andos; .. .;0p1; Ok+15---30n is a plan
for (A,1,0,G). O

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether rege) |~ ¢ is NP-hard.

Proof: We give a reduction from SAT to the problem. Lgtbe any formula. Let be a state
variable not occurring imp. Now regr_4 ., .y(a) % a if and only if (-¢ — a) %= a, because
regr(~p—a,a)(a) = ~¢ —a. (¢ — a) |~ a is equivalent tg~ (-¢ — a) — a that is equivalent
to the satisfiability of~((-¢ — a) — a). Further,=((—¢ — a) — a) is logically equivalent to
=(=(¢ V a) V a) and further to-(—¢ V a) and¢ A —a.

Satisfiability of¢ A —a is equivalent to the satisfiability @f asa does not occur i: if ¢ is
satisfiable, there is a valuatiansuch that = ¢, we can set: false inv to obtainv’, and asu
does not occur i, we still havev’ = ¢, and further’ = ¢ A —a. Clearly, if ¢ is unsatisfiable
alsog A —ais.

Henceregr -, _q.q)(a) # a if and only if ¢ is satisfiable. O

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regio) is satisfiable is NP-hard.

32 CHAPTER 3. DETERMINISTIC PLANNING

Proof: Proof is a reduction from SAT. Let be a formularegr . (a) is satisfiable if and only if
¢ is satisfiable becausegr,) (a) = ¢.

The problem is NP-hard even if we restrict to operators that have a satisfiable preconglition:
is satisfiable if and only if¢ vV —a) A a is satisfiable if and only ifegr -4 (a A b) is satisfiable.
Herea is a state variable that does not occuwinClearly, ¢ vV —a is true whena is false, and
hencep Vv —a is satisfiable. O

Of course, testing thaegr,(¢) [~ ¢ or thatregr,(¢) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both gaaland operator effects can be viewed as sets of
literals, and the definition of regression is particularly simple: regressimgth respect toc, e)
is (G\e) Uc. Ifthere isa € A such thats € G and—a € e, then the result of regression s that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator(a V b, g) yieldsa \V b. This formula corresponds to two non-disjunctive goals,

a andb. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compeasition
of operators; = (c1,e1) andos = (co, e2) is an operator that behaves like applymgfollowed
by 0,. Fora to be true aften, we can regress with respect tw,, obtainingePG,(e2) V (a A
—-EPC_,(e2)). Condition for this formula to be true aftef is obtained by regressing with,
leading to

regre, (EPG,(e2) V (a A "EPC.,(e2)))
= regr., (EPG,(e2)) V (regre, (a) A —regre, (EPC.,(e2)))
= regr., (EPG,(e2)) V ((EPG.(e1) V (a A "EPC.4(e2))) A —regr., (EPC.,(e2))).

Since we want to define an effegt> a of 01 0 05 S0 thata becomes true whenevey followed by
02 would make it true, the formula does not have to represent the case in whightrue already
before the application af; o 0. Hence we can simplify the above formula to

regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).
An analogous formula is needed for making false. This leads to the following definition.

Definition 3.11 (Composition of operators)Leto; = (c1,e1) andos = (c2, e2) be two opera-
tors onA. Then theircompositiorno; o os is defined as

. /\ <((regr€1(EPQ1(62)) V (EPC,(e1) A —regr., (EPC_4(e2)))) > a)A >
’ ((regre, (EPC-q(e2)) V (EPC.4(e1) A —regre, (EPGy(e2)))) > —a)

a€A

wherec = c; Aregre, (c2) A Ngea ~ (EPGy(er) A EPC 4 (e1)).

3.1. STATE-SPACE SEARCH 33

Note that ino; o 05 first oy is applied and thems, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Leto; and oy be operators and a state. Then app.., (s) is defined if and only
if appy, .0, () is defined, and appoo, () = AP ;05 (S)-

Proof: Let o; = (c1,e1) andoy = (co,e3). ASSUMEAPN,, 00, () IS defined. Hence = ¢; A
regre, (c2) A N\yea = (EPGi(e1) AEPC4(e1)), thatis, the precondition af; o o, is true, ands [~
(regr., (EPG,(e2)) V(EPG,(e1) A-regre, (EPC 4 (e2)))) A(((regre, (EPCoq(e2)) V (EPC (1) A
—regr., (EPG,(e2)))))) for all a € A, that is, the effects do not contradict each other.

Now app,, (s) in app, ;0. (s) = apm, (app, (s)) defined becausel= ciAA ¢ 4 ~(EPGy(e1)A
EPC.,(e1)). Furtherapp,, (s) = c2 by Theorem 3.7 because = regre, (c2). Froms B
(regre, (EPC,(e2)) v (EPG,(e1) A—regre, (EPC.a(e2)))) A(((regre, (EPCua(e2)) V (EPCua(e1) A
—regr., (EPC,(e2)))))) foralla € Alogically follows s = regr., (EPG,(e2))Aregre, (EPC.4(e2))
for all a € A. Hence by Theorem 3.8pp,, (s) = EPG,(e2) A EPC.,(e2) for all a € A, and by
Lemma 3.3app,, (app,, (s)) is defined.

For the other direction, sin@pp,, (s) is defineds = c1 A A\,c 4 ~ (EPGy(e1) A EPC 4(e1)).
Sinceapp,, (app,, (s)) is defineds |= regr., (c2) by Theorem 3.7.

It remains to show that the effects of o 02 do not contradict. Sincapp,,(app,,(s)) is
definedapp,, (s) = EPG,(e2) A EPC.,(e2) ands = EPG,(e1) A EPC.,(e1) for all a € A.
Hence by Theorem 3.9 [~ regr., (EPG,(e2)) A regre, (EPC.,(e2)) for all a € A. Assume that
for somea € A s |= regre, (EPG(e2)) V (EPG,(e1) A —regre, (EPC.4(e2))), thatis,a € [0 o
024, If s |= regr., (EPC,(e2)) thens [~ regr., (EPC.,(e2)) V —regr., (EPC,(ez2)). Otherwise
s = EPG(e1) N —regre, (EPC.4(e2)) and hences = EPC.,(e1). Hence in both cases (-
regr., (EPC.q(e2)) V (EPC_y(e1) A —regr., (EPC,(e2))), that is,—a ¢ [o1 o 02]9t. Therefore
apm, oo, (s) is defined.

We show that for any. € A, app,,00,(s) = a if and only if app,, (app,(s)) E a. Assume
app, .0, (s) E a. Hence one of two cases hold.

1. Assumes = regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).
If s = regr., (EPC,(e2)) then by Theorem 3.7 and Lemma 3¢ [ei]9et .. Hence

app, (s)
AP0, (8) = a.
Assumes = EPGC,(e1) A —regre, (EPC.4(e2)). Hence by Lemma 3.3 € [e1]9¢* and
app, (s) = a, andapp,, (s) = EPC.4(e2) and—a ¢ [62]25&1 (s)- Henceapp,, 0, (s) = a.

2. Assumes = a ands [~ regre, (EPC.,(e2)) V (EPC.4(e1) A —regre, (EPG,(e2))).

Sinces [~ regr., (EPC.,(e2)) by Theorem 3.7app,, (s) %= EPC.,(e2) and hence-a ¢
[e23pp, o)
1

Sinces = EPC.,(e1) A —regr, (EPC,(e2)) by Lemma 3.3-a ¢ [e1]% or app, (s) =

EPC,(e2) and hence by Theorem 3a7c [62}23171 ()"

Hence eitheo,; does not make false, or if it makes, makes it true again so thapp,, .., (s) = a

in all cases.
Assumeapp,, .., (s) = a. Hence one of the following three cases must hold.

1. 1fa € [eg]gfﬁ%l («) then by Lemma 3.3pp,, (s) | EPG,(e2). By Theorem 3.7s |=

regre, (EPG,(e2)).

34 CHAPTER 3. DETERMINISTIC PLANNING

2.1f a € [eg]9t and—a ¢ [eQ]ggﬁbl(s) then by Lemma 3.21pp,, (s) = EPC..(e2). By

Theorem 3.7% |= EPG,(e1) A —regre, (EPC.4(e2)).

3. If s = aand-a ¢ [eg}ggf%l (s @nd—a & [e1]¢°" then by Lemma 3.8pp,, (s) £ EPC.q(e2).

By Theorem 3.% - regr., (EPC.,(e2)).
By Lemma 3.3s = EPC_,(e1).

In the first two cases the antecedent of the first conditional in the definition ©b, is true,
meaning thaepp,,..,(s) = a, and in the third case = a and the antecedent of the second
conditional effect is false, also meaning thaip,, .., (s) = a. O

The above construction can be used to elimirsgguential compositioftom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used|&i@rtt al.,

1964, WA« [Pearl, 198} IDA « [Korf, 1989, and simulated annealiirkpatrick et al., 1989.

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial 5{édeward search) or from
the goal formula& (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

01;025...50n.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

3.3. REACHABILITY 35

Definition 3.13 (Neighbors for local search with progression)Let(A, I, O, G) be a succinct tran-

sition system. For forward search, the neighbors of an incomplete @lamy; .. .; 0, are the
following.

1. o01;09;...;0p;0f0ranyo € O such that app,......,..({) is defined

2. 01;00;...;0; foranyi < n

Whenapp,,.o.:....o. () = G thenoy; ... ; 0, is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

Opj...;01.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let (A, I, O, G) be a succinct tran-
sition system. For backward search, the children of an incompletegqyan . ; o; are the follow-

ing.
1. o;0p;...;01 foranyo € O such thatregs.,, . .., (G) is defined

2. 0;...;01foranyi <n

When! = regr,,......, (G) thenoy; .. .; 01 is a plan.

Backward search and forward search are not the only possibilities to define planning as a search
problem. In partial-order plannirid/cAllester and Rosenblitt, 199the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state and) a set of operators. Define thferward distance
setsDz""d for I, O that consist of those states that are reachable fibimy at mosti operator
applications as follows.

fwd
Dy = {1}
DM — D™ {slo € O,s € img,(D")} forall i > 1

36 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.16 Let I be a state a set of operators, andDg‘Nd, Dfl""d,
sets forl, O. Thenthe forward distancef a states from I is

5fwd()_ 0ifs=1
1= it s e DM\ DM,

... the forward distance

Ifs & D?Nd foralli >0 thené?"’d(s) = oo. States that have a finite forward distance erachable
(from I with O).

Distances can also be defined for formulae.

Definition 3.17 Let ¢ be a formula. Then théorward distanceﬁ?”d(@ of ¢ is i if there is state
s such thats = ¢ and 6?"’(’(5) = ¢ and there is no state’ such thats’ = ¢ and 5§Wd(s) <. If
I |= ¢ thens™(4) = 0.

A formula ¢ has a finite distance oo if and only if (A, I, O, ¢) has a plan.

Reachability and distances are useful for implementing efficient planning systems. We mention
two applications.

First, if we know that no state satisfying a formufds reachable from the initial states, then
we know that no operatdgp, e) can be a part of a plan, and we can ignore any such operator.

Second, distances help in finding a plan. Consider a deterministic planning problem with goal
stateG. We can now produce a shortest plan by finding an opetaﬁnrthat&?"'d(regro(G)) <
63‘Nd(G), usingregr,(G) as the new goal state and repeating the process until the initial/sate
reached.

Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-
complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds approximation®f distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulais an invariant if and only if the distance ofy from the initial state is

oo. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states an® a set of operators. An formula is an
invariantof I, O if s |= ¢ for all statess that are reachable froni by a sequence of O or more
operators inO.

An invariant¢ is the strongest invariant ¢ |= ¢ for any invariant). The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every state
s = ¢ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants:sttisfies the properties of the strongest
invariant, any other formula that is logically equivalengidor examplep V ¢, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

3.4. APPROXIMATIONS OF DISTANCES 37

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

(ontabléx) A clear(z) A clear(y),on(z,y) A —clealy) A —ontabléz))
(cleafz) A on(z,y), ontabldz) A cleary) A —on(zx, y))
(clearz) A on(z,y) A cleal(z),on(z, z) A clealy) A —clear(z) A —on(z,y))

We consider the operators obtained by instantiating the schemata with the ohjé&ctndC'. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

cleai(A) A clea B) A clea(C') A ontabld A) A ontablé B) A ontabléC)A
—0n(A4, B) A —on(A4,C) A —on(B, A) A —on(B, C) A —on(C, A) A —on(C, B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

cleafA) < (—on(B, A) A —on(C,A)) clea(B) < (-on(4, B) A —on(C, B))

clea(C) < (—on(A,C) A—-on(B,C)) ontabléA) < (—on(A, B) A —on(A, C))
ontablé B) « (—on(B, A) A —on(B, C)) ontabléC) «— (-on(C, A) A —on(C, B))
-0on(A4, B) V —on(4, C) -on(B, A) vV —on(B, C)
-on(C, A) v -on(C, B)
—on(B, A) vV -on(C, A)
—on(A4,C) Vv -on(B,(C)
—(on(A, B) Aon(B,C) Aon(C, A)) —(on(A,C) Aon(C, B) Aon(B, A))

-on(A, B) vV -on(C, B)

We can schematically give the invariants for any Xebf blocks as follows.

clea(z) « Vy € X\{z}.-on(y, z)

ontabldz) « Vy € X\{z}.—on(z,y)

—on(z,y) V —on(z, z) wheny # z

—on(y, x) V —on(z, z) wheny # z

—(on(zy, x2) Aon(za, x3) A« AON(Tp—1,2n) AON(xy,z1)) foralln > 1,{z1,...,2,} CX

The last formula says that tlea relation is acyclic. |

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

38 CHAPTER 3. DETERMINISTIC PLANNING

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a state state in which state variablasc A have certain
values. This is by computing a sequence of g&t$'* of literals. The seD"** consists of literals
that are true in all states that have distagcéfrom the statd.

Recall Definition 3.2 oEPG (o) for literalsi and operators = (c, e):

EPG(0) = ¢ AEPG(e) A /\ ~(EPC,(e) A EPC.q(e)).

acA

Definition 3.20 Let L = AU {—ala € A} be the set of literals ord and! a state. Define the sets
Die® for ¢ > 0 as follows.

Dg** ={le Ll =1}
Direr = Di"*\{l € L|o € O, Dj*%* U{EPG{0)} is satisfiablg, fori > 1

Since we consider only finite setsof state variables andg***| = |A| and D}§" C D**
foralli > 0, necessarilyD;"** = D"** for somei < [A| and allj > i.

The above computation starts from the B§t** of all literals that are true in the initial stafe
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each $8t** is computed from the preceding gef*%” as follows. For
each operatas it is tested whether it is applicable in one of the distained states and whether it
could make a literal false. This is by testing wheth&PC(o) is true in one of the distande- 1
states. If this is the case, the litefalould be false, and it will not be included " **.

The sets of states in which the literdl$™** are true are an upper bound (set-inclusion) on the
set of states that have forward distarmce

Theorem 3.21 Let D?Nd,z‘ > 0 be the forward distance sets ag)"** the max-distance sets for
I'andO. Then for alli > 0, D?’Vd C {s € S|s = D"} whereS is the set of all states.

Proof: By induction on.
Base case = 0: DSNd consists of the unique initial stafeand D*** consists of exactly those

literals that are true id, identifying it uniquely. Hencé.)?”d = {s € S|s = D"*"}.

Inductive caseé > 1: Let s be any state id)?”d. We show that = D;"**. Letl be any literal
in D,

3

Assumes € Dz‘fdl As DI"er C D4 alsol € D"%*. By the induction hypothesis|= I.

Otherwises € D?Nd\Dz‘fci. Hence there i® € O andsg € sz‘f‘i with s = app,(so). By
Der C D™ and the induction hypothesig = [. Asl € D", by definition of D]"** the set
D5 U {EPG{(0)} is not satisfiable. By, € sz‘f‘i and the induction hypothesig = D;"4".
Hences, = EPG(0). By Lemma 3.3 applying in s, does not makéfalse. Hences = 1. O

The setsD;"** can be used for estimating the distances of formulae. The distance of a formula
is the minimum of the distances of states that satisfy the formula.

3.4. APPROXIMATIONS OF DISTANCES 39

Definition 3.22 Let¢ be a formula. Define

X) = 0 iff DF*** U {¢} is satisfiable
! ~ | diff DP*T U {¢} is satisfiable andD'" U {¢} is not satisfiable for d > 1.

Lemma 3.23 Let] be a state() a set of operators, and;***, D***, ... the sets given in Defi-
nition 3.20 for/ andO. Then app,.. .., (I) = D;'** for any operators{os,...,0,} C O.

Proof: By induction onn.

Base case = 0: The length of the operator sequence is zero, and hemgé/) = 1. The set
D{* consists exactly of those literals that are trus,iand hencd = D{***,

Inductive case: > 1: By the induction hypothes&pp,,, , () = D7,

Let [be any literal inD***. We show it is true imapp,,. .., (I). Sincel € D;* and

Dper C D, alsol € DY, and hence by the induction hypotheag,,, ,(I) = L

n—17 n—11
Sincel € D;** it must be thatD]*¢ U {EPC(0,)} is not satisfiable (definition ab;**) and
further thatapp,, ;.....,_, (I) = EPG(0,). Hence applying,, in app,,;....,,_, (1) does not make
false, and consequentypp,, ..., (I) = L.

O

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state(a set of operatorsp a formula, andDg***, DT***, .. . the sets

Proof: By Lemma 3.23app,,.....,(I) = D;'**. By assumptiorapp,,....,(I) = ¢. Hence
Drer U {¢} is satisfiable. O

Corollary 3.25 Let [be a state an@ a formula. Then for any sequenag . . ., o,, of operators
such thatapp....., (1) = ¢, n > 07 (¢).

The estimate)]'®{(¢) never overestimates the distance frerto ¢ and it is therefore an ad-
missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the sef3]*** runs in polynomial time except that the satisfiability
tests forDU{¢} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the propertyfha{if} is
satisfiable then as@b, ¢) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability tésts {4} are replaced by tests a6t ¢).

The function asa, ¢) tests whether there is a state in whigland the literalsD are true, or
equivalently, whetheD U {¢} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thaD U {¢} is satisfiable even when it is not. This, however, never leads to

40 CHAPTER 3. DETERMINISTIC PLANNING

overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asatD, 1) = false
asatD, T) = true
asatD,a) = true iff —a ¢ D (for state variablea € A)
asatD, —a) = trueiff a ¢ D (for state variables € A)
asatD, -—¢) = asatD, ¢)
asatD, ¢1 V ¢2) = asatD, ¢1) or asatD, ¢2)
asatD, ¢1 A ¢2) = asatD, ¢1) and asdtD, ¢2)
asatD, —(¢1 V ¢2)) = asatD, —¢;1) and asdtD, —¢p2)
asatD, —(¢1 A ¢2)) = asatD, —¢1) or asatD, —¢2)

In this and other recursive definitions about formulae the cases(farA ¢2) and—(¢; V ¢2) are
obtained respectively from the casesfarv ¢o andg, A ¢2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulae) (respectively
—(¢ V 1)) we make recursively two satisfiability tests that do not require that the subformulae
and+) (respectively-¢ and—1)) aresimultaneouslgatisfiable.

We give alemma that states the connection betweefasaj and the satisfiability oDU{¢}.

Lemma 3.26 Let ¢ be a formula andD a consistent set of literals (it contains at most one; of
and—a for everya € A.) If D U {¢} is satisfiable, then asé@b, ¢) returns true.

Proof: The proof is by induction on the structure @f

Base case 1p = L: The setD U {_L} is not satisfiable, and hence the implication trivially
holds.

Base case 2y = T: asatD, T) always returns true, and hence the implication trivially holds.

Base case 3 = a for somea € A: If D U {a} is satisfiable, thema ¢ D, and hence
asatD, a) returns true.

Base case 4p = —a for somea € A: If D U {—a} is satisfiable, them ¢ D, and hence
asatD, —a) returns true.

Inductive case 1¢ = ——¢’ for some¢’: The formulae are logically equivalent, and by the
induction hypothesis we directly establish the claim.

Inductive case 2p = ¢1V ¢o: If DU{p1V o} is satisfiable, then eithdd U {41} or DU{¢2}
is satisfiable and by the induction hypothesis at least one of/asat) and asdtD, ¢2) returns
true. Hence as@b, ¢; V ¢») returns true.

Inductive case 3¢ = ¢1 A @21 If D U {p1 A ¢2} is satisfiable, then both U {¢;} and
D U {¢2} are satisfiable and by the induction hypothesis both(&sat;) and asdtD, ¢2) return
true. Hence aséb, ¢; A ¢2) returns true.

Inductive cases 4 and B,= —(¢1 V ¢2) and¢ = —(¢1 A ¢2): Like cases 2 and 3 by logical
equivalence. O

The other direction of the implication does not hold because for exampl@asat-a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals:(@sat) always returns true iD U {¢} is
satisfiable, but it may return true also when the set is not satisfiable.

3.4. APPROXIMATIONS OF DISTANCES 41

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in whichtaie
variables are false and a goal state in which all state variables are true and a epecdtors each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance is

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained asshenof the distances suggested by each ofilstate variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffng001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 LetI be a state and. = A U {—a|a € A} the set of literals. Define the sely"
for ¢ > 0 as follows.

Df = {leL|I):l}
D = D} \{l € L|o € O,cos{EPG(0), i) < i} forall i > 1

We define coép, i) by the following recursive definition.

cos(L,i) =
cos(T,i) =
cos{a,i) = |fﬂa§zD5F,foraeA
cos{—a,i) = 0ifa g D7, forae A

costa,i) = jif ~a € D+ \Dj for somej < i

)
)
)
)
) =
) =
)
)
)
i)
i)
i)

cos(—a,i) = jifa € D} \DJr for somej < i
cos(a,i) = oo if ﬁaeDJr forallj <i
cos{—a,i) = coifa € D+ forall j <
cos(¢p1 V ¢o,1) = mm(cos(qﬁl, ,COS(2, 1))
COS{(P1 A ¢2,1) = COS{(¢h1, %) + COS{by, %)
cos(——¢, i) = cos(o, 1)
cos{—(¢p1 A ¢2),4) = min(cos{—¢1, i), COS{—¢pa,1))

cos(—(¢1 V ¢2),1)

Note that a variant of the definition of the max heuristic could be obtained by replacing the
sum+- in the definition of costs of conjunctions byax. The definition of cosip, i) approximates

cost{—¢y, i) + cos{—ps, i)

42 CHAPTER 3. DETERMINISTIC PLANNING

satisfiability tests similarly to the definition of agat, ¢) by ignoring the dependencies between
state variables.
Similarly to max distances we can define distances of formulae.

Definition 3.28 Let¢ be a formula. Define

07 (¢) = cost¢,n)
wheren is the smallest such thatD;” = D" ,.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 Let D*** i > 0 be the sets defined in terms of the approximate satisfiability tests
asatD, ¢). ThenD™ C D forall i > 0.

Proof: The proof is by induction omn.
Base casé = 0: By definition D = Dje*,
Inductlve case > 1: We have to show thab*4*\{l € L|o € O, asatD;"7",EPC(0))} C
D" \{l € L|o € O,cos{EPG(o) i < i}. By the induction hypothesi®%® C DI . Itis
sufﬁment to show that coEPC;(0), i) < i implies asa(tD[”“f”, EPG(0))

We show this by induction on the structuredt= EPG{(0)

Induction hypothesis: cogt, i) < ¢ implies asatD;"4*,)=true.

Base case Iy = L: cos(_L,) = oo and asdtD;"**, L)=false.

Base case 2y = T: cos(T,:) = 0 and asdtD!"**, T)=true.

Base case 3p = a: If cost(a,i) < i then—a ¢ D for somej < ior-a ¢ Dy. Hence
—a ¢ D; . By the outer induction hypothesis: ¢ D%* and consequentlya ¢ D%, Hence
asatD;"** a)=true.

Base case 4) = —a: Analogous to the casg = a.

Inductive case 5¢ = ¢1 V ¢2: Assume costy V ¢o,i) < i. Since cosp; V ¢o,i) =
min(cos{¢1,1),Ccos(¢s, 1)), either costp,i) < i or cost¢s, i) < i. By the induction hypothesis
cost¢q,1) < i implies asatD!"4", ¢1), and cosfpo, i) < i implies asatD!"4", ¢2). Hence either
asatD;"4", ¢1) or asatD!"%", ¢2). Therefore by definition as@D!"4", ¢1 V ¢2).

Inductive case 6) = ¢1 A pa: Assume cogth; A ¢, i) < i. Sincei > 1 and cosfp; V ¢a, i) =
cos{(¢y,1) + cos{¢s,1i), both costey, i) < i and cosfps,i) < i. By the induction hypothesis
cos{¢1,1) < i implies asatD!"4", ¢1), and costgs, i) < i implies asatD"%", ¢2). Hence both
asatD;"4", ¢1) an asatD]"%", ¢2). Therefore by definition as@D!"4", o1 A ¢2).

Inductive case 7 = ——¢;: By the induction hypothesis cdst, i) < i implies asatD!"4", ¢1).
By definition cos{——¢1,7) = cos{¢1,i) and asatD, -—¢) = asatD, ¢). By the induction hy-
pothesis cost—¢1, 1) < i implies asatD"4", =—¢1).

Inductive case 8 = —(¢1 V ¢2): Analogous to the case = ¢ A ¢o.

Inductive case % = —(¢1 A ¢2): Analogous to the case = ¢1 V ¢o. O

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

3.4. APPROXIMATIONS OF DISTANCES 43

Example 3.30 Consider an initial state such that= —a A —bA —c and the operatofT,a AbAc).
A state satisfying: A b A cis reached by this operator in one step Jfgtl(a AbAc)=3. |

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebe[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofs. These literals must be reachable in the sense of the sets
Di"e* which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goal&D, ¢) recursively finds a se¥/ of literals such thal/ = ¢ and each literal
in M is consistent withD. Note that)M itself is not necessarily consistent, for examplefbe= ()
and¢ = a A —a we getM = {a,—a}. If a setM is found goalsD, ¢) = {M} and otherwise

goalg D, ¢) = 0.
Definition 3.31 Let D be a set of literals.

goalyD, 1) =0
goal§ D, T) = {0}
goalgyD,a) = {{a}}if~a ¢ D
goal§D,a) = Qif —a € D
goaly D, ~a) = {{~a}}ifa g D
goalgD,—a) = 0ifa e D
goal{ D, =—¢) = goalyD, ¢)
) goalg D, ¢1) if goals(D, ¢1) # 0
goalg D, ¢2) otherwise
goals D, ¢1 A ¢o) = {éLl U Ly} gtazil\llvsl(sl; ¢1) = {L1} and goal$D, ¢3) = {L2}
goalg D, —¢,) if goals(D, —¢1) # ()
goalg D, —¢9) otherwise

goalg D, (41 V ¢2)) = { éLl U Ly} ic]:t%(;?\lii(s% —¢1) = {L1} and goal$D, ~¢») = {L2}

goaly D, g1 V ¢2) = {

goals D, ~(¢1 A 6)) = {

Above in the case fop; V ¢, if both ¢, and¢- yield a set of goal literals the set fgr is
always chosen. A practically better implementation is to choose the smaller of the two sets.

44 CHAPTER 3. DETERMINISTIC PLANNING

Lemma 3.32 Let D be a set of literals and a formula.

1. goald D, ¢) # () if and only if asatD, ¢) = true.

2. Ifgoals(D, ¢) = {M} then{l|l € M} N D = § and asatD, A\,.,,) = true.
Proof:

1. Thisis by an easy induction proof on the structure dfised on the definitions of agak, ¢)
and goalsD, ¢).

2. This is becausé¢ D for all I € M. This can be shown by a simple induction proof.

O

Lemma 3.33 Let D and D’ C D be sets of literals. If goal®, ¢) = 0 and goal§D’, ¢) = {M }
for someM, then there i € M such that € D\D'.

Proof: Proof is by induction in the structure of formulae

Induction hypothesis: If goal®, ¢) = () and goal§D’, ¢) = { M} for somel, then there is
l € M suchthat € D\D'.

Base cases 1 & 2y = T and 2¢ = _L: Trivial as the condition cannot hold.

Base case 3) = a: If goals(D,a) = 0 and goal§D’,a) = M = {{a}}, then respectively
—a € D and—a ¢ D'. Hence there is € M such that € D\D'.

Inductive case 19 = ——¢’: By the induction hypothesis as go@ls ——¢') = goalg D, ¢’).

Inductive case 2p = ¢ V ¢o: Assume goaldD, @1 V ¢2) = 0 and goalsD’, ¢1 V o) = {M }
for someM. Hence goaldD, ¢;) = 0 and goaléD, ¢») = 0, and goal§D’, ¢1) = {M} or
goalg D', ¢2) = {M}. Hence by the induction hypothesis with or ¢, there isl € M such that
le D\D'.

Inductive case 3p = ¢1 A ¢o: Assume goaldD, ¢1 A ¢2) = 0 and goalsD’, ¢ A ¢o) = { M}
for someM. Hence goalsD, ¢1) = 0 or goal§D, ¢3) = 0, and goaléD’, 1) = {L;} and
goal§ D', ¢2) = {Lo} for someL, and L, such thatM = L, U L,. Hence by the induction
hypothesis withp; or ¢, there is eithet € Ly orl € Lo such thal € D\D'.

Inductive case® = —(¢1 A ¢2) and¢p = —(¢1 V ¢2) are analogous to cases 2 and 3. [

Definition 3.34 Definest™ (¢) = relaxedplariA, I, 0, ¢).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Let ¢ be a formula and"®(¢) the max-distance defined in terms of #&ate).
Thend(¢) > 57(0).

Proof: We have to show that for any formuiathe procedure catelaxedplarA,l,0,G) returns a
number> 67¥(G).

First, the procedure returns if and only if asatD;"**,) = false for all; > 0. In this case
by definitiond"®(G) = oo.

3.4. APPROXIMATIONS OF DISTANCES 45

1: procedurerelaxedplan(A,l,0,G);
2: L:=AU{~-ala € A}; (* Set of all literals *)
3: compute set®*** as in Definition 3.20;
4: if asatD"**, G) = false for alli > 0 then return oo; (* Goal not reachable *)
5. t:=01G);
6: L&, =0
7. Nigq = 0;
8. G;:=G,
9: for i:=tdownto1ldo
10: begin
11: LE = (LY \Niy1) U{l € M|M € goalg D", G;)}; (* The goal literals *)
12: N;:={l € L¥|l € D™4*}; (* Goal literals that become true betweer- 1 andi *)
13: T; := a minimal subset of so thatV; C {l € L|o € T;,asatD;"%", EPG(0))};
14: Gi-1:= N\ien, VIEPG(0)|o € T;}; (* New goal formula *)
15: end

16: return |Ty| + |Ta| + -+ |T3

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = §"®(G). Now ¢t = 0 if and only if asatDg***, G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift > 1 then for everyi € {1,...,t} the setT; is non-empty, entailingZ| +
<+ Ty >t = 6"G). This is by an induction proof fromto 1.

We use the following auxiliary result. If agd?"%", G;) = false and asaD;"**, G;) = true
andl ¢ D for all | € LY thenT; is well-defined and’; # . The proof is as follows.

By Lemma 3.32 goal®;"4*, G;) = () and goalsD***, G;) = {M } for somel/.
By Lemma 3.33 there isc M such that € D™%* and henceV; # . By definition
I € D foralll € N;. By N; C L§ and the assumption aboLf’ [¢ D for

alll € N;. Hencel € D™\ D" for all | € N;. Hence by definition oD for
everyl € N; thereiso € O such that asaD"4*, EPG(0)). Hence there i§; C O
sothatN; C {l € L|o € T;,asatD"4*, EPG(0))} and the value of; is defined. As
N; # () alsoT; # (.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.
Induction hypothesis: For afl € {i,...,t}

1.1¢ D foralll € LY,

2. asatD7***, ;) = true and asaD}'*", G;) = false, and

3.T; #0.

Base case = ¢:

1. 1 ¢ Do foralll € LY by (2) of Lemma 3.32 becaudg’ = {I € goalg D"** G)}.
2. Ast = d1"*(G,) by definition asatD;"%", G;) = false and as@D;"**, G;) = true.

46 CHAPTER 3. DETERMINISTIC PLANNING

3. By the auxiliary result from the preceding case.

Inductive casé < t:

1. We havel ¢ D for all | € LY because.{ = (LY, \Ni1) U {l € goalg D", G;)}
and by the induction hypothesis¢ Dha* for all I € LZ-GJr1 and by (2) of Lemma 3.32
I ¢ D" foralll € M for M € goalg D", G,).

2. By definition G; = Ay, VIEPG(o)lo € Tiy1}. By definition of T;,, for every
[€ N4 there iso € Tjq such that asaD;"**, EPG(0)) = true. By definition of

asatD"" 1 V ¢2) and asdtD]"**, ¢1 A ¢2) for ¢1 and¢, also asatD!"**, G;) = true.

Then we show that asd®;"%", G;) = false. By definition ofD;"**, asatD;"4*, EPG/(0)) =
false for alll € D"** ando € O. Hence asaD;"%", EPG(0)) = false for alll € N;;
ando € O becausé € D™, Hence as&D!%* EPG/(o0)) = false for alll € N;;; and
o € T;11 becausd;, 1 C O. By definitionG; = /\leM+1 V{EPG(o)|o € T;+1}. Hence
by definition of asdtD, ¢) also asdtD;"%", G;) = false.

3. By the auxiliary result from the preceding case.

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plah Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mdiggrals, for some fixech.

For representing the strongest invariant arbitrarily higimay be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly as increases. However, for many
applications short invariants of length= 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 47

1: procedure preservedf,C',0);
2. ¢=101V---Vli,forsomely,...,l, ando = (c,e) for somec ande;
3: foreachl e {l,...,l,}do
4: if C'U{EPGC(o)} is unsatisfiablehen goto OK; (* [cannot become false. *)
5: foreachl’ € {ly,...,1,}\{l} do (* Otherwise another literal inp must be true. *)
6: if C U{EPG(0)} = EPG/ (o) then gotoOK; (* I’ becomes true. *)
7: if C U{EPG(0)} =" A -EPC;(0) then goto OK; (* I” was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)
10: OK:
11: enddo
12: return true;

Figure 3.2: Algorithm that tests whethemay falsifyl; v - - - V [,, in a state satisfying’

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0O states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possibleé after
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

Let C; be a set of clauses that characterizes those states that are reachatypetator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
C; whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the(sgat; .

Figure 3.2 gives an algorithm that tests whether applying an operatot) in some state
may make a formulg Vv --- Vv [, false assuming that= C U {l; V --- V [,,}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C' be a set of clausesy) = I vV --- V [, a clause, anth an operator. If
preserved$,C,0) returnstrue then app(s) = ¢ for any states such thats = C U {¢} and
o is applicable ins. (It may under these conditions also retdaise).

Proof: Assumes is a state such that|= C A ¢, app,(s) is defined andpp,(s) = ¢. We show
that the procedure returffalse

Sinces |= ¢ andapp,(s) [~ ¢ at least one literal in is made false by. Let {i;,... [t} C
{l1,...,1,} be the set of all such literals. Henge= I~ A --- A It and{i{, ..., Ik} C [e]de.
The literals in{iy, ..., 1, }\{l{, ..., L} are false ins ando does not make them true.

N
(o]

CHAPTER 3. DETERMINISTIC PLANNING

1: procedureinvariants@, I, O, n);
2. C:={acAlEa}U{alaec A I}}a}; (* Clauses true in the initial state *)
3. repeat
4: C'=C,;
5: foreacho e Oandl; Vv --- VI, € C such thanot preserved(V - - - V [,,,C",0) do
6: C:=C\{l4 V- Vin};
7 if m < nthen (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C=Cu{lyVv---VipValaeA{a,~a}N{l,...,ln} =0}
10: C=Cu{lhVv---VipV-a|aecA{a,~a}N{l,....ln} =0}
11: end
12: end do
13: until C =C";
14: return C,
Figure 3.3: Algorithm for computing a set of invariant clauses
Choose any € {I{,...,l}. We show that when the outermdet eachloop starting on line

3 considerg the procedure will returfalse

Sincel € [e]? ando is applicable ins by Lemma 3.3s = EPG(0). Since by assumption
s = C, the condition of thef statement on line 4 is not satisfied and the execution proceeds by
iteration of the innefor eachloop.

Let !’ be any of the literals i exceptl. Sinceapp,(s) £ ¢, I’ € [e]%t. Hence by Lemma
3.3s [~ EPG/(0), and ass = C'U {EPG(o)} the condition of thef statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. 1f I € {l{,...,1;;} then by assumptioh € [e]4*" and by Lemma 3.3 |= EPC;(0). Hence
CU{EPG(0)} = -EPC;(0) and the condition of thé statement on line 7 is not satisfied.

2.1f U ¢ {li,..., 1} thens (= I". HenceC U {EPG;(0)} §~ !’ and the condition of th&
statement on line 7 is not satisfied.

Hence on none of the iterations of the inrier eachloop is agoto OKexecuted, and as the
loop exits, the procedure returfadse O

Figure 3.3 gives the algorithm for computing invariants consisting of at mdiserals. The
loop on line 5 is repeated until there aresma O and clauses in C such that preserved(C’,0)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 Let A be a set of state variable$,a state,O a set of operators, and > 1 an
integer. Then the procedure call invariants(Z, O, n) returns a setC of clauses with at most
literals so that for any sequeneg; . . . ; o, of operators fronO app,,.. ..., (1) = C.

)

Proof: Let Cy be the value first assigned to the variallein the procedurenvariants and
C1,Cy, . .. be the values of the variable in the end of each iteration of the outerspestioop.
Induction hypothesis: for everjp,,...,0;} C O and¢ € C;, app,.....o, (1) = ¢.
Base case = 0: app.(/) for the empty sequence is by definitidritself, and by construction
Cy consists of only formulae that are true in the initial state.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 49

Inductive case > 1: Take any{o1,...,0;} C O and¢ € C;. First notice that preservet(;,0)
returnstrue because otherwisg could not be inC;. Analyze two cases.

1. If ¢ € C;_1, then by the induction hypothes&pp,,.. .., ,(I) = ¢. Since¢ € C;
preservedt,C;_1,0) returnstrue. Hence by Lemma 3.38pp,,......,(I) = ¢.

2. If ¢ € C;_1, it must be because preserveéd(;_1,0") returnsfalsefor someo’ € O and
¢’ € C;_1 such that is obtained fromy’ by conjoining some literals to it. Heneg = ¢.

Since¢’ € C;_; by the induction hypothesiapp,,.. .., ,(I) = ¢'. Since¢’ = ¢ also
apm, ..o, , (I) = ¢. Since the function call preserved(;,o) returnstrue by Lemma 3.36
apPy,;....0. (1) = ¢.
This finishes the induction proof. The iteration of the procedure stops WhenC;_1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenges . ; o,,, of operators. [

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performedprgservedries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clawde/ c and the operatobV ¢, —a).

We cannot show for any literal that it is true after applying the operator but we know that either
orcis true. The test performed lpreservectould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asatD, ¢) is not suitable because it assumes thas a set of literals, whereas fpreservedhe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asatD, ¢) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world

with the goalAonBABonC Regression with the operator that moves B onto C from the table yields

AonBA Bclear A Cclear A BonT. This formula does not correspond to an intended blocks world

state becaus@onBis incompatible withBclear, and indeed;-AonBV —Bclearis an invariant

for the blocks world. Any regression step that leads to a formula that is incompatible with the

invariants can be ignored because that formula does not represent any state that is reachable from

the initial state, and hence no plan extending the current incomplete plan can reach the goals.
Another application of invariants and the intermediate ggtproduced by our invariant al-

gorithm is improving the heuristics in Section 3.4. Usibg** for testing whether an operator

precondition, for example A b, has distance from the initial state, the distances @fandb are

used separately. But even when it is possible to reach datidb with ¢ operator applications,

it might still not be possible to reach them both simultaneously wiperator applications. For

example, for = 1 and an initial state in which bothandb are false, there might be no single op-

erator that makes them both true, but two operators, each of which makes only one of them true. If

—a V —b € C;, we know that aftef operator applications one afor b must still be false, and then

we know that the operator in question is not applicable at time poiiiherefore the invariants

and the set€’; produced during the invariant computation can improve distance estimates.

50 CHAPTER 3. DETERMINISTIC PLANNING

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 199%. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulag ¢1, ¢, . .. SO that every valuation that satisfies
formula¢; corresponds to a plan of lengthPlanning proceeds by first testing the satisfiability of
oo. If ¢g is unsatisfiable, continue withy, ¢, and so on, until a satisfiable formulg is found.

From a valuation that satisfigs, a plan of lengtm can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variables = {ay,...,a,}, one could describe an action directly as a
propositional formulap over propositional variabled U A’ whereA’ = {d},...,a,}. Here the
variablesA represent the values of state variables in the statewhich an action is taken, and
variablesA’ the values of state variables in a successor state

A pair of valuationss ands’ can be understood as a valuationbf) A’ (the states assigns a
value to variables! ands’ to variablesA4’), and a transition froms to s’ is possible if and only if

s, s = ¢.

Example 3.38 The action that reverses the values of state variabjesnd a- is described by
¢ = (a1 < —a}) A (a2 < —dl). The following4 x 4 incidence matrix represents this action.

! ! ! ! ! ! ! !
a1Gg Q1G9 Q1G9 Q1G9
aias| 00 01 10 11

6o o0 0 0 1
orf{o 0 1 O
(0 1 0 O
111 0 0 O

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 51

The matrix can be equivalently represented as the following truth-table.

aj ag al al

000

e i i e i i el e ==l == M es B e B v B e B o B an)
S OO R OO R OO~ OO RO O OoB

=== - O OO0 OO OO
H, OO, P OO, HFHFOOHFHFHO
— O O RO FROFRORFRORFO M

Example 3.39 Let the set of state variables He= {a1, a2, as}. The formula(a; < a)) A (az «

as) A (a3 < a}) represents the action that rotates the values of the state varigbtesandas

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations of and the columns to valuations df = {a}, a5, a}}.

000 001 010 011 100 101 110 111
oooy1r 0 0 O O O O O
0010 0 0 0 1 0 0 O
01000 1 0 0 O O O O
0110 0 0 0o O 1 0 O
10000 0 1 0 O O O O
1010 0 0 0 O O 1 O
11000 0 0 1 O O O O
11110 0 0 0 0O 0O 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table
with one row for every valuation oft U A’, a total of 64 rows. [

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(¢1 < a)) A--- A (¢, <> al)) A whereA = {ay,...,ay} is the set of
all state variablesp; are formulae over (without occurrences oft’ = {d/, ..., a,}). There are
no restrictions ony. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

52 CHAPTER 3. DETERMINISTIC PLANNING

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formular4 (o) which represents the operator= (c, €) is defined by

Ta(€) = Noea((EPGi(e) V (a A ~EPC.(e))) <> a’) A N\ en ~(EPGi(e) A EPCoq(e))
T4(0) = ¢ ATale).

The formulart4(e) expresses the value afin the successor state in terms of the values of
the state variables in the predecessor state and requires that execoitygnot make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formular4 (o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operatofa VV b, (b > a) A (¢ > —a) A (a > b)). The corresponding
propositional formula is

((bV (a A —c)) = d)

A(aVv (bA=L)) <)
(LV(en—l)) <)

A=(bAe)AN=(anNL)AN=(LAL)

=
<

=
>
1

&
!
Q\

Lemma 3.42 Let s and s’ be states and an operator. Lety : AU A" — {0, 1} be a valuation
such that

1. foralla € A, v(a) = s(a), and
2. foralla € A, v(d") = §(a).
Thenv |= 74(0) if and only ifs’ = app,(s).

Proof: Assumev |= 74(0). Hences |= cands = A, 4 7(EPG,(e) A EPC.4(e)), and therefore
app,(s) is defined. Consider any state varialece A. By Lemma 3.4 and the assumption
v = (EPG(e) V (a A "EPC.,(e))) < d, the value of every state variable $h matches the
definition ofapp,(s). Hences’ = app,(s).

Assumes’ = app,(s). Sinces’ is definedy = 74(0) andv = A\, 4 ~(EPG,(e) \EPC.4(e)).
By Lemma 3.4 | EPG,(e) V (a A =EPC.,(e)) if and only if s’ |= a. O

Definition 3.43 DefineR (A, A") = 74(01) V -+ V Ta(0n).

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 53

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendifity (A, A") by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Note that invariants do not affect the set of models of
a formula representing planning: any satisfying valuation of the original formula also satisfies the
invariants because the values of variables describing the values of state variables at any time point
corresponds to a state that is reachable from the initial state, and hence this valuation also satisfies
any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition sys#ensO, GG) into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA and A’ of propositional variables, the sdtdescribing the values of the state variables in
the state in which the operator is applied, and thed$etescribing the values of the state variables
in the successor state of that state.

For a fixed plan length, we use setsl?, ..., A" of variables to represent the values of state
variables at different time points, with variablel$ representing the values at tinie In other
words, a valuation of these propositional variables represents a sequence s,, of states. If
a € Ais a state variable, then we use the propositional variabler representing the value af
at time pointi.

Then we construct a formula so that the statés determined by, the states,, is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let (A, I, 0, G) be a deterministic transition system. Defile= A{a’la €
A I(a) = 1} U{=a’|a € A, I(a) = 0} for the initial state and=™ as the formulaG with every
variablea € A replaced by™. Define

B30 = O AR (A%, AN A Ry (AL, A2) A - ARL(A™T, AT A G
whereA? = {a‘|la € A} foralli € {0,...,n}.

A plan can be found by using the formul@g™ as follows. We start with plan length= 0, test
the satisfiability ofp}?, and depending on the result, either construct a plab(ff is satisfiable),
or increase by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasiig upper
bound on plan length i84l — 1 where A is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.8.

The construction of a plan from a valuatiorthat satisfiesb;“? is straightforward. The plan
has exactly; operators, and this plan is known to be the shortest one because the fdrjffula
had already been determined to be unsatisfiable. First construct the exegution s; of the
plan fromwv as follows. For allj € {0,...,i} anda € A, s;j(a) = v(a;). The plan has the

54 CHAPTER 3. DETERMINISTIC PLANNING

formoq,...,0;. Operatoro; for j € {1,...,i} is identified by testing for alb € O whether
app,(sj—1) = s;. There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45Let A = {a,b}. Let the statd satisfyl = a A b. LetG = (a A =) V (—a A b)
ando; = (T, (a > —a) A (-a > a)) andoy = (T, (b > —b) A (=b > b)). The following formula
is satisfiable if and only if A, I, {01, 02}, G) has a plan of length 3.

(@ = a') A" = =b)) v ((a® < =a') A (0 < b))
AM((a' = a®) A (b = =b%) V ((a! < —a?) A (b1 < b%)))

(((@® & a®) A (b? < =b)) V ((a® & =a”) A (b < b))
A((a® A=) V (=a® A b3))

One of the valuations that satisfy the formula is the following.

This valuation corresponds to the plan that applies opetatat time point 0,0, at time point 1,
ando, at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorsando,. |

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a /\—\bO 0)

A(((a® — bl) (0" = YA (P = a')) V((=a® = ar) A (=) < b)) A (= < c)))
A((ah = b*) A (b1 AN (= a®)V((ma' < a®) A(=b' < B) A (=t <)
A(=a? A =b% A c?)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators bgd L.

(a® A =% A =)

AT & BY A (L o) A (Lo al)) V(4T & an) A (oL o B) A (~L & 1))
A((a! = DA =T A o L)V (0! = 1) A (B = 1) (el = T))
A(=a? A =b% A c?)

After simplifying we have the following.

(a® A =0 /\)
A((B' A = /\—|a)\/(—|a1/\bl/\cl)
A((=a* AbE A =ct) vV (at AbE A =)
A(=a? A =b% A ?)

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 55

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b must be true and! andc! must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a® A =B0 A =)
NM((a® bl) (07 =) A (= a)) Vv ((ma® < ar) A (20 < b A (2 < c!)))
All(a! < D) A (0" = @) A (h o @)V ((mad & a?) A (FB) < B2) A (= o 2)))
A(a® A =b? A c?)

We simplify again and get the following formula.

(a® A =00 A =)
A((BE A =ct A=al) Vv (ma; ABEAC))
A((mat A A)V (mal ABE A =et))
A(a? A =b% A c?)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. |

3.6.4 Parallel application of operators

For states and setd” of operators we definappy(s) as the result of simultaneously applying all
operators € T': the preconditions of all operators Tnmust be true irs and the statappr(s) is
obtained froms by making the literals nU (pe) ET[e]4t true. Analogously to sequential plans we
can defineppr,;r,;...;1, (s) asappr, (- - - appr, (appr, (s)) - -).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operatoepas (i5).

Consider the formula4 (o) representing one operator= (c,).

ch \ ((EPGi(e) V (a A =EPC.4(e))) < a') A \ =(EPGy(e) AEPC4(e)).
a€A acA
This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

cN

Naca(EPGi(e) —a’)A
/\aEA(PC.u(e) ——a)A
Naeal(a A —a")—EPCq(e))A
Naca((ma Aa')—EPGy(e))

We use this formulation of 4 (o) as basis of obtaining encodings of planning that alkeveral
operators in parallel Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variablesor denoting the execution of operatarg O.

56 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.47 Let A be the set of state variables ari?l a set of operators. Let the formula
74(0O) denote the conjunction of formulae

(o—c)A
Nacalo NEPGy(e) —a')A
Naecalo NEPC (€)= —d’)

forall {c,e) € O and

Naeal(an—a")—((o1 NEPCy(e1)) V -+ V (0, NEPC 4 (en))A
Naca((mana")— ((0o1 NEPGy(e1)) V -+ -V (on AEPCy(en)))

whereO = {oy,...,0,} andey, ..., e, are the respective effects.

The difference to the definition af4(0) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.
The formular4 (O) matches the definition afppr(s).

Lemma 3.48 Let s and s’ be states and andT' C O sets of operators. Let: AUA'UO —
{0,1} be a valuation such that

1. forallo€ O,v(0) =1iffo €T,
2. foralla € A, v(a) = s(a), and
3. foralla € A, v(d") = §(a).
Thenv |= 74(0) if and only ifs’ = appr(s).

Proof: For the proof from right to left we assume thét= appr(s) and show that = 74(0O).

For the formulae — ¢ consider any = (c,e) € O. If o & T thenv [~ oandv = o —c.
So assume < T'. By assumptiors is a state such thaippy(s) is defined. Hence = ¢. Hence
vEo—e.

For the formulae A EPG,(e) — o’ consider any = (c,e) € O. If o € T thenv (= o and
v = o ANEPG(e) — [for all literals!. So assume € T. Nowv = o A EPG(e) — [because
if s = EPG(e) thenl € [e]% by Lemma 3.3 and’ |= [. Proof foro A EPC_,(e) — —d’ is
analogous.

For the formulag(a A =a’) — ((o1 A EPC.4(e1)) V -+ V (0n, A EPC.4(e;)) consider any
a € A. According to the definition o’ = appr(s), a can be true ins and false ins’ only if
—a € [0]%* for someo € T. By Lemma 3.3-a € [0]% if and only if s | EPC_,(0). So if the
antecedent ofa A —a’) — ((01 AEPC.4(01)) V- -+ V (om A EPC.4(01,))) is true, then one of the
disjuncts of the consequent is true, whére= {01, ...,om . The proof for the change from false
to true is analogous.

For the proof from left to right we assume= 74(O) and show that’ = appy(s).

The preconditior: of everyo € T is true ins because = o andv |= 0 — ¢, ands’ |= [e]d¢
for everyo = (c,e) € T because = o andv = o A EPG(e) — [for every literall. This also
means thafT]¢¢* is consistent andppr(s) is defined.

For state variablesnot occurring iN7]%¢ we have to show that(a) = s'(a). Sincea does not
occur in[T]%, for everyo € {o1,...,0m} = O = {{c1,€1), ..., {Cm,em)} €ithero ¢ T or both

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 57

a & [e]4¢t and—a ¢ [e]?°t. Hence eithev [~ o or (by Lemma 3.3) = —(EPGC,(e)) A—EPC.q4(e).
This together with the assumptions that= (a A —a’) — ((01 A EPC.q(e1)) V -++ V (0 A
EPC..(em))) andv = (ma A a’) — ((01 A EPG(01)) V -+ V (om A EPGy(er,))) impliesv =
(a—a') A (~a— —a’). Therefore every € A not occurring in[7]%¢ remains unchanged. Hence
s’ = appr(s). O

Example 3.49 Leto; = (-LAMP1, LAM P1) andoy = (—~LAM P2, LAM P2). The applica-
tion of none, one or both of these operators is described by the following formula.

(‘\LAMPl A LAMPI/) — ((01 A T) V (02 A J_)
(LAMP1AN-LAMP1)—((01 A L)V (02 A L)
(~LAMP2 AN LAMP2")— ((0y A L)V (02 A T)
(LAMP2 N-LAMP2")— ((01 A L)V (02 A L)
01— LAMP1

01— -LAMP1

09— LAM P2’

09— LAM P2

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there areuch operators, there atéplans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of length consisting of these operators, it has to show that none aof'ltipdans reaches
the goals. This may be combinatorially very difficultifis high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operatorga, —b) and (b, —a) may be executed simultaneously resulting in a
state satisfying-a A —b, although this state is not reachable by the two operators sequeniilly.

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.

58 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.51 (Step plans)For a set of operatorg) and an initial state/, a step plan folO

andI is a sequencd’ = (Ty,...,T;_1) of sets of operators for sonie> 0 such that there is a
sequence of states, . . ., s; (the execution of") such that
1. sog =1,

2. foralli € {0,...,l—1} and every total ordering;, ..., 0, of T}, app,,......, (si) is defined
and equalss; 1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. &bk any
propositional formula. Lel = {a4,...,ay} be the set of propositional variables occurringin
Our set of state variables i§. Leto, = (¢, T) andO = {(T,a1),...,(T,an),0,}. Lets ands’
be states such thatjz a ands’ |= a for all a € A. We show that is a tautology if and only if
T = (O) is a step plan fo© ands.

Assumeg is a tautology. Now for any total ordering), ..., o, of O the stateapp,,... .o, ()
is defined and equalg because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects trueyields s’.) HenceT is a step
plan.

AssumeT’ is a step plan. Let be any valuation. We show that= ¢. LetO, = {(T,a)|a €
A,v = a}. The operatorg) can be ordered tay, . . . , 0,, SO that the operato®, = {oy, ..., 01}
precede, andO\ (O, U {o.}) follow o.. SinceT is a step planapp,,......, (s) is defined. Since
alsoappy:....o.:0. () is defined, the precondition of o, is true inv = appy,....o, (s). Hence
v = ¢. Since this holds for any valuatian ¢ is a tautology. O

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notiomtérference

Definition 3.53 (Affect) Let A be a set of state variables and= (c,e) ando’ = (¢, ¢’) opera-
tors overA. Theno affectso’ if there isa € A such that

1. a is an atomic effect im anda occurs in a formula ire’ or it occurs negatively ir/, or

2. —a is an atomic effect im anda occurs in a formula ire’ or it occurs positively in’/.

Definition 3.54 (Interference) Operatorso ando’ interfereif o affectso’ or o affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state and’ a set of operators so that apps) is defined and no two
operators interfere. Then apfis) = app,,,, () for any total orderingoy, ..., 0, Of T'.

Proof: Letoy, ..., 0, be any total ordering af’. We prove by induction on the length of a prefix
of o1, ..., 0, the following statement for all € {0,...,n — 1} by induction or:: s |= «a if and
only if app,,......,(s) = a for all state variablea occurring in an antecedent of a conditional effect
or a precondition of operatotg 1, ..., o,.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 59

Base case = 0: Trivial.
Inductive casé > 1: By the induction hypothesis the antecedents of conditional effecis of
have the same value inand inapp,,......,_, (s), from which follows[o;]%* = [o;]dc

o PPoq;...i0;_1(8)"
Sinceo; does not interfere with operatass, 1, . . ., 0, NO state variable occurring jn;]%* occurs
in an antecedent of a conditional effect or in the precondition; of, . . . , 0,,, that is, these state
variables do not change. Singg|%* = [o;]9c this also holds when; is applied in

aphoy;...;0;_1 (8)
app,....o,_, (s). This completes the induction proof.
Sinceappr(s) is defined, the precondition of evesyc T is true ins and[o]¢*! is consistent.
By the fact we established above, the precondition of evegy T" is true also inapp,,.....o, (5)

and [Oﬁﬁﬁol;m;ok(s) is consistent for any{oy,...,0r} € T\{o}. Hence any total ordering of

the operators is executable. By the fact we established ahg{®, = [o]4¢ for every
{o1,...,0,} € T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. Sinceppr(s) is defined, no operator ifi' undoes the effects of another operator.
Hence the same staté= appy(s) is reached in every case. O

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define
Ra(A,A',0) = 74(0) A \{~(0 A d')[{0,0'} € 0,0 # o, 0 and?'interfere}

Definition 3.57 Let (A, I, O, G) be a deterministic succinct transition system. Define
P = 10 ARy (A%, AT, 0%) ARy (AT, A%, ON) A+ ARy (A A", 0") A G”

whereA? = {a‘|la € A} foralli € {0,...,n} andO! = {o’|o € O} forall i € {1,...,n} and
19 = A\{a’la € A, I(a) =1} U{=a"|a € A, I(a) = 0} andG™ is G with everya € A replaced
bya™.

If 7" is satisfiable and is a valuation such that = ®}*", then definel; = {0 € Olv |=
o'} for everyi € {1,...,n}. Then(Ty,...,T,) is a plan for the transition system, that is,
appry;..;, (1) = G-

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= (AinFreiburg AinStuttgartA —AinFreiburg
transport-B-with-truck-1= (BinFreiburg BinKarlsruheA —BinFreiburg

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. |

60 CHAPTER 3. DETERMINISTIC PLANNING

3.7 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylandef1994. He proved the hardness part by giving a simulation of deterministic
polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.53.

Theorem 3.59 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let (X, @, 6, qo, g) be any deterministic Turing machine with a polynomial space bound
p(x). Leto be an input string of length.

We construct a deterministic succinct transition system for simulating the Turing machine. The
succinct transition system has a size that is polynomial in the size of the description of the Turing
machine and the input string.

The setA of state variables in the succinct transition system consists of

1. g € @ for denoting the internal states of the TM,
2. s; for every symbok € ¥ U {|,d} and tape cell € {0,...,p(n)}, and
3. h; for the positions of the R/W headc {0, ...,p(n) + 1}.

The initial state of the succinct transition system represents the initial configuration of the TM.
The initial statel is as follows.

1. I(q0) =1
2. I(q) =0forallqg € Q\{qo}-
3. I(s;) = 1ifand only if ith input symbol iss € 3, foralli € {1,...,n}.
4. I(s;) =0foralls e ¥andi € {0,n+1,n+2,...,p(n)}.
5. 1(0;)=1foralie {n+1,...,p(n)}
6. I(;) =0foralli € {0,...,n}
7. 1(|o) =1
8. I(|;)=0forallne{1,...,p(n)}
9. I(h)) =1
(

10. I(h;) =0foralli € {0,2,3,4,...,p(n) + 1}

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

3.7. COMPUTATIONAL COMPLEXITY 61

To define the operators, we first define effects corresponding to all possible transitions.
Forall(s,q) € (XU{],0})xQ,i € {0,...,p(n)}and(s’,¢',m) € (XU{|}) xQx{L, N, R}
define the effect, ,;(s, ¢, m) asa A k A 6 where the effects, ~ andf are defined as follows.
The effecta describes what happens to the tape symbol under the R/W head= i’ then
a = T as nothing on the tape changes. Otherwise; —s; A s, to denote that the new symbol in
theith tape cell iss’ and nots.
The effects describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —¢ A ¢ if ¢ # ¢’ and T otherwise. We define = —-¢ wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.
The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

=h; Nh;—1 fm=1L
0= T ifm=N
=h; A hit1 ifm=R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positigm) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Lets,q) € (XU {|,0}) x Q,i € {0,...,p(n)} andd(s,q) = {(s',¢’,m)}. If
g(q) = 3, then define the operator

05,0 = (hi Nsi Nq,Tsqi(s',¢',m)).

We claim that the succinct transition system has a plan if and only if the Turing machine accepts
without violating the space bound.

If the Turing machine violates the space bound, the state variaple, ; becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in poly-
nomial time translated into a planning problem, all decision problems in PSPACE are polynomial
time many-one reducible to deterministic planning, and the plan existence problem is PSPACE-
hard. O

Theorem 3.60 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingn-step reachability between two states wlith m mem-
ory consumption is given in Figure 3.4. The parameters of the algorithm are theo§eperators,
the starting state, the terminal state’, andm characterizing the maximum numht of opera-
tors needed for reaching from s.

We show that when the algorithm is called with the numbet |A| of state variables as the
last argument, it consumes a polynomial amount of memory ifhe recursion depth is. At the
recursive calls memory is needed for storing the intermediate statekhe memory needed for
this is polynomial inn. Hence at any point of time the space consumptiafi(is:?).

A succinct transition systerfy, I, O, G) with n = | A| state variables has a plan if and only
if reach(O,1,s',n) returnstrue for somes’ such thats’ = G. lteration over all states’ can be
performed in polynomial space and testisig= G can be performed in polynomial time in the

62 CHAPTER 3. DETERMINISTIC PLANNING

1: procedurereach(),s,s’,m)

2. if m =0then (* Plans of length 0 and 1 *)
3 if s=s’or there iso € O such that’ = app,(s) then return true

4: else returnfalse
5

6

7

8

else
begin (* Longer plans *)
for all statess” do (* Iteration over intermediate states *)
if reachQ,s,s”,m — 1) and reachQ,s”,s’,m — 1) then return true
;9 end
10: return false;
11: end

Figure 3.4: Algorithm for testing plan existence in polynomial space

size ofG. Hence the whole memory consumption is polynomial. 0

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.61 The problem of whether a plan having a length bounded by a given polynomial
exists is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let ¢ be a formula over the propositional variablesdnLet N = (A, {(a,0)|a € A}, O, ¢)
whereO = {(T,a)|a € A} We show thatV has a plan if and only if the formulais satisfiable.

Assumep € SAT, that is, there is a valuation: A — {0, 1} such that = ¢. Now take the
operators{ (T, a)|v = a,a € A} in any order: these operators form a plan that reach the state
that satisfie.

AssumeN has a plaroy,...,o0,. The valuationv = {(a,1)|(T,a) € {o1,...,0m}} U
{(a,0)|a € A, (T,a) €{o1,...,0m}} of Ais the terminal state of the plan and satisfies [

Theorem 3.62 The problem of whether a plan having a length bounded by a given polynomial
exists is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of length) exists.
Let N = (A, 1,0, G) be a deterministic succinct transition system.

1. Nondeterministically guess a sequencd of p(m) operatorsy, ..., o; from the setO.
Sincel is bounded by the polynomialm), the time consumptio®(p(m)) is polynomial
in the size of V.

2. Computes = app,, (app,,_, (- - apm, (app, (1)) - -)). This takes polynomial time in the size
of the operators and the number of state variables.

3.8. LITERATURE 63

3. Tests = G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length apfmesexists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. d

These theorems show the NP-completeness of the plan existence problem for polynomial-
length plans.

3.8 Literature

Progression and regression were used early in planning redé&osbnschein, 1931 Our defi-

nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesi§de Bakker and de Roever, 1972; Dijkstra, 1p76stead of using the general definition

of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of litefs#sdersonet al, 1999. Essentially,

these formulae are the disjunctsrefr,(¢) in DNF, although the formulagegr,(¢) are not gen-

erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at thd kiengz and Sel-
man, 1992; 1996 In addition to Kautz and Selmd®994, parallel plans were used by Blum and
Furst in their Graphplan plannéBlum and Furst, 1997 Parallelism in this context serves the
same purpose as partial-order reducfiGodefroid, 1991; Valmari, 1991reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planniiRjntanenet al, 2004. Ernst et al.[1997 have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exist§Biereet al,, 1999. This approach to model-checking is called
bounded model-checking

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths 2p to1
have to be considered when there arstate variables. In typical planning applicationss
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lemgth 214 do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently propbgeMdillan, 2003;
Mneimneh and Sakallah, 20p3

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDdt96d and
Bonet and Geffnef2001. The distance estimaté§®{(¢) andd; (¢) in Section 3.4 are based on
the ones proposed by Bonet and Geff[@001]. Many other distance estimates similar to Bonet

64 CHAPTER 3. DETERMINISTIC PLANNING

and Geffner’s existHaslum and Geffner, 2000; Hoffmann and Nebel, 2001; Ngwte., 2004.
The 5™ (¢) estimate generalizes ideas proposed by Hoffmann and N@oed.

Other techniques for speeding up planning with heuristic state-space search include symmetry
reduction[Starke, 1991; Emerson and Sistla, 1P86Ad partial-order reductiofGodefroid, 1991;
Valmari, 1991; Aluret al, 1997, both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
gues address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effect§Rintanen, 1998 The computation parallels the construction of planning
graphs in the Graphplan algoritifalum and Furst, 1997 and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-boundsamposed on the
search tree, then formulae obtained/hyregression steps (suffixes of possible plans of length
m) that do not satisfy claus&s, _,,, cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Sciigest

Some researchers extensively use Graphplan’s planning dfaipins and Furst, 1997or var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylandgi994 gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiabilitySelmanet al, 1994. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rin{@0844 complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcada©9d.

Any computational problem that is NP-hard — not to mention PSPACE-hard — is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there

3.9. EXERCISES 65

has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several resEaytders

der, 1994; Bickstom and Nebel, 199%ut the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-compliEeol et al, 19995. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidabldErol et al., 1999.

3.9 Exercises

3.1 Show that regression for goals that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a deleté(sset of state variables that
become false) can equivalently be defined@sa) U p whend N G = 0.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence ofnastep plan can be determined in
polynomial time (inn and the size of the problem instance), because the corresponding formula
transformed to CNF is a set of 2-literal clauses or a set of Horn clauses?

Chapter 4

Nondeterministic planning

4.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques
for computing both regression and progression for sets of states that are represented as formulae.

4.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 4.1 (Regression for nondeterministic operators)Let ¢ be a propositional formula
ando = (c,e1]| - - - |e,) an operator where, . . ., e, are deterministic. Define

regrgd(d)) = regr(c,m) ((f)) JARRRNA regr(c,en>(¢)'

Theorem 4.2 Let ¢ be a formula overd, o an operator overd, andS the set of all states ovet.
Then{s € S|s |= regr*d(¢)} = spreimg({s € S|s = ¢}).
Proof: Leto = (c, (e1] - - - |en)).

{s € Sls [=regry(¢)}

- {S € S’S ': regr(c,e1>(¢) JARRRNA regr(c,en>(¢>}

= {S € S’S ': regr(c,eﬂ(d))? ceey S): regr(c,en>(¢)}

= {S S S’app(c,eﬁ(s) ': G, ... 7app(c,en> (3)): QS} T3.7

={se S|s' E ¢forall & € img,(s) and there is’ = ¢ with sos’}

= spreimg({s € S|s |= ¢})

The second last equality is becaus, (s) = {app.e;)(s), - - - > PP, (5) }- O

Example 4.3 Leto = (d, (b|-c)). Then

regrid(b « c) = regrgp (b < ¢) Aregry (b« c)
(dNA(T =) AdA (b 1))
dAcA—b.

66

4.1. NONDETERMINISTIC OPERATORS 67

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effects the setshangese) of state variables that are possibly changed by
in other words, the set of state variables occurring in an atomic effect in

changeéa) = {a}
change§—a) = {a}
changeéc > e¢) = changese)
changeée; A --- Ae,) = changege;) U - - - U changesge,,)
changeée| - - - |e,) = changege;) U - - - U changese,)

We make the following assumption to simplify the translation.

Assumption 4.4 Leta € A be a state variable. Let; A - - - A e, occur in the effect of an operator.
If e1,...,e, are not all deterministic, then or —a may occur as an atomic effect in at most one
ofeq,...,e,.

This assumption rules out effects like|b) A (—a|c) that may make: simultaneously true
and false. It also rules out effects liké&d > a)|b) A ((—d > —a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.3 to satisfy Assumption 4.41(d > a)|b) A ((—d > —a)l|c) is equivalent ta(d > a) A (—d >
—a))[((d > a) A Q)| (b A (~d > =a))|(bAc).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choices | - - - |e,, the formula for eacla; has to express the changes for exactly
the same set of state variables. ThisBas given as a parameter to the translation function. The
setB has to include all state variables possibly changed by the effect.

M(e) = T(e) whene is deterministic
dﬂ%d(el\“'\en) = 753(61) V"'VTBd(en)d ;
TH(e1 A Nep) = TB\(BQU"'UBn)(el) A ng(eg) Ao A Tgn(en)
whereB; = changes¢e;) foralli € {2,...,n}

The first part of the translatiorf(e) for deterministice is the translation of deterministic effects
we presented in Section 3.6.2 restricted to state variablds. iThe other two parts cover all
nondeterministic effects in normal form. In the translatiorof\ - - - A e,, all state variables that
are not changed are handled in the translation;0f Assumption 4.4 guarantees that for each
7M(e) all state variables changed byare inB.

Example 4.5 We translate the effect

e = (al(d > @) A (cld)

68 CHAPTER 4. NONDETERMINISTIC PLANNING

into a propositional formula. The set of state variabled is {a,b, c,d}.

e (€) = 7lop (al(d > a)) A 7i (cld)
= (77, {a b}(a) v T{a b}(d > a)) /\(d (c) \/TPcdd}(d))
— (@R (b)V ((a v d) = a) A (b DA
(& A (d = &)V (e o &) A)

For expressing a state in terms 4f instead ofA, or vice versa, we need to map a valuation
of A to a corresponding valuation of’, or vice versa. for this purpose we defigled’ /A] =

{{d’, s(a))|a € A}.

Definition 4.6 Let A be a set of state variables. Let= (c, e) be an operator over in normal
form. Definerl9(o) = ¢ A 719(e).

Lemma 4.7 Leto be an operator over a set of state variables. Then
{v|vis a valuation ofA U A’ v |= 71%(0)} = {s U s'[A"/A]|s,s' € S, 5" € img,(s)}.

Proof: We show that there is a one-to-one match between valuations satisfyfiag and pairs of
states and their successor states.

For the proof from right to left assume thatinds’ are states such that € img,(s). Hence
there isE € [e]; such that’ is obtained froms by making literals inE true. Letv = sUs'[A’/A].
We show thav [= 77%0). Leto = (c, e). Sinceimg,(s) is non-emptys |= c. It remains to show
thatv [= 779(e).

Induction hypothesis: Let be any effect over a sd#® of state variables, angdand s’ states
such for somev € [e]; s’ = E ands(a) = s'(a) for everya € B such that{a, ~a} N E = 0.
Thens U s'[A’/A] = 70%(e).

Base casee is a deterministic effect. There is only ofie € [e];. A proof similar to that of
Lemma 3.42 shows thatu s’[A’/A] = hd(e).

Inductive case le = e; A --- A ey! By definitionr (61 A Nep) = Tg‘{(BQUMUBn)(el) A
T (e2) A+ AT (en) for B; = changeée;),i € {2,... ,n}. Let £ be any member d], and
s’ a state such that = E ands(a) = s'(a) for everya € B such that{a,—a} N E = (. By
definition of [e]; we haveE = E, U --- U E,, for someE; € [e;]; for everyi € {1,...,n}. The
assumptions of the induction hypothesis hold for evgrgnd B;,i € {2,...,n}:

1. s’ E E; becauser; C F.
2. By Assumption 4.4(a) = s'(a) for everya € B; such thaf{a, —a} N E; = 0.

Similarly for e; andB\(32 U---UB,). Hences U s'[A'/A] & Tg?(ei) foralli € {2,...,n}and
sUS'[A'JAl E T3 5,,..up,) (i), and therefore U s'[A'/A] |= T}(e).

Inductive case 2% = 1] - - \en By definitionid(e1| - - - e,) = 7hd(e1) V - - v 70(e,,). By
definition[e1] - - - [en]s = [e1]s U -+ U [en]s. HenceE € [e;]s for somei € {1,...,n}. Hence
the assumptions of the induction hypothesis hold for at leastgnec {1,...,n} and we get
sUs'[A'JA] = TM(e;). AsThd(e;) is one of the disjuncts afid(e) finally s U s'[A/A] = 70(e).

For the proof from left to right assume that= () for v = s U s'[A’/A]. We prove by
structural induction that the changes frarto s’ correspond tde]s.

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 69

Induction hypothesis: Letbe any effectp a set of state variables that includes those occurring
in e, ands ands’ states such that |= 714(e) wherev = s U s'[A/A]. Then there iSZ € [e]s such
thats = F ands(a) = s'(a) for all a € B such thafa, —a} N E = 0.

Base casee is a deterministic effect. There is only o € [e];. A proof similar to that of
Lemma 3.42 shows that the changes betweands’ for « € B correspond tdv.

Inductive case 1g = e; A--- Ae,: By definitionfe]; = {E1U---UE,|Eq € [e1]s,..., En €
len]s}, and by Assumption 4.4 sets of the state variables occurring,in ., e, are disjoint.
By definition 7/d(eq A -+ A en) = TB({(BQU"'UBn)(el) A ng(eg) A A Tgi(en) for B, =
changege;),i € {2,...,n}. The induction hypothesis for and alla € B is directly by
the induction hypothesis for al € B = (B\(B; U ---U By,)) U By U --- U B,, because
v E TB?(BQU"'UBn)(el) A ng (ea) A=+ A Tg(i (en).

Inductive case Z = e1| - - - |e,: By definition[e; |- - - |en]s = [e1]s U+ - - U[en]s. By definition
Meq| - len) = T(er) Vv - vV T8(e,,). Because = mhd(er| - |en), v = T(e;) for some
i € {1,...,n}. By the induction hypothesis therefisc [e;]s with the given property. We get the
induction hypothesis for becausée;]s C [e]s and hence als& € [e]s.

Therefores’ is obtained froms by making some literals itE € [e]s true and retaining the
values of state variables not mentionedfinands’ € img,(s). O

4.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we show
how operations on transition relations have a counterpart as operations on formulae that represent
transition relations.

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992, a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

4.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based @xistential abstractiomnduniversal abstraction

Definition 4.8 Existential abstractionf a formula¢ with respect to an atomic propositianis
the formula

da.¢ = ¢[T/a] vV ¢[L/a].
Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 4.9 Universal abstractionf a formulag with respect to an atomic propositianis the
formula

Va.¢ = ¢[T/a] A ¢[L/a].

Existential and universal abstractiong@fvith respect to &et of atomic propositions defined
in the obvious way: fo3 = {b1,...,b,} such thatB is a subset of the propositional variables

70 CHAPTER 4. NONDETERMINISTIC PLANNING

occurring ing define
dB.¢ = 3b1.(Fba.(...Tbp.0...))
VB.¢p = Yb1.(Vba.(...Vbyp.00...)).

In the resulting formulae there are no occurrences of variabl&s in

Let ¢ be a formula over. ThendA.¢ is a formula that consists of the constamtand_ L. and
the logical connectives only. The truth-value of this formula is independent of the valuatitbn of
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstrac-
tion. When we writev U o' for a pair of valuations we view valuationsas binary relations, that
is, sets of pairs such théta, b), (a,c)} ¢ v for anya, b andc such thab # c.

Lemma 4.10 Let¢ be a formula overd U A’ andv’ a valuation ofA’. Then
1. v = 3A.¢ifand only if (v U ') = ¢ for at least one valuation of A, and
2. v E=VA.gifandonly if (v Uv") = ¢ for all valuationsv of A.

Proof: We prove the statements by induction on the cardinalityl ofMe only give the proof for
3. The proof forv is analogous to that fot.

Base cas@A| = 0: There is only one valuation = () of the empty sed = (). When there is
nothing to abstract we haw#).¢ = ¢. Hence triviallys” = 30.¢ if and only if (v U 0) | ¢

Inductive caseA| > 1: Take anya € A. v' = 3A.¢ ifand only if v’ = FA\{a}.(¢[T /a] V
¢[L/a]) by the definition o8a.¢. By the induction hypothesis = 3A\{a}.(¢[T /a] V ¢[L/a])
ifand only if (voUv') |= @[T /a]Vé[L/a] for at least one valuatiom of A\{a}. Since the formula
¢[T/a] vV ¢[L/a] represents both possible valuationsiof ¢, the last statement is equivalent to
(vU') | ¢ for at least one valuation of A. O

4.2.2 Images and preimages as formula manipulation

Let A = {a1,...,an}, A = {d},...,al,} andA” = {df,...,al'}. Let ¢, be a formula over
AU A’ and ¢, be a formula overd’ U A”. The formulae can be viewed as representations of
2™ x 2™ matrices or as transition relations over a state space of8ize

The product matrix ofy; andg, is represented by a the following formula ovér A”.

HA/.(Z)l A ¢

Example 4.11 Let ¢; = a «— —ad’ and¢g, = a’ <~ a” represent two actions, reversing the truth-
value ofa and doing nothing. The sequential composition of these actions is

da’.¢1 A2 = ((a = —~T) A (T —a")V(lae-L)A(L<a))
((a = i) (T=d)) V(e T)A(L<d)

CL<—>_'Cl

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 71

matrices formulas sets of states
vectorVi «p, formula over4 set of states
matrix My, «n formula overd U A’ transition relation
Visn +Vign | 61V ¢ set union
b1 N ¢a set intersection
Myscn X Npsen, | 3A'(779(0) A 779(0")[A” JA!, A’/ A])[A’/A"] | sequential compositiono o’
Visn X Maxn | (3A.(6 A T9(0)))[A/ 4] img,(T)
Mysen X Vyser | 3A'(7790) A ¢[A’/A]) preimg,(T')
VA (T79(0) — ¢[A"/A]) A FA'.779(0) spreimg(7T)

Table 4.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. Aboe = {s € S|s = ¢}, M is the matrix corresponding
to 719(0) and NV is the matrix corresponding .

4.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuatiohs) of’ for
representing pairs for states and for states we use valuatiots of

Lemma 4.12 Let ¢ be a formula overd and v a valuation ofA. Thenv = ¢ if and only if

v[A'/A] |= ¢[A'/A], and (¢[A'/A])[A/AT] = ¢.
Definition 4.13 Leto be an operator ang a formula. Define

img,(¢) = (34.(¢ A 74%(0)))[A/A]
preimg,(¢) = 3A4".(74%0) A ¢[A/A))
spreimg (¢) = VA’ .(77%(0) — ¢[A'/A]) A FA".70(0).

Theorem4.14LetT = {s € S|s = ¢}. Then{s € S|s = img,(¢p)} = {s € S|s
(34.(6 A TRY0)))[A/A']} = img, (T).

Proof: s' = (3A.(¢ A 71%0)))[A/A"] O
iff s'[A’/A] = 3A.(¢ A T1%0)) L4.12
iff there is valuations of A such thats U s'[A'/A]) = ¢ A 71%(0) L4.10

iff there is valuations of A such that |= ¢ and(s U s'[A"/A]) = 77%0)

iff there iss € T such thats U s'[4"/A]) = 71%0)

iff there iss € T such thats’ € img,(s) L4.7
iff s € img, (7).

Theorem4.15LetT = {s € S|s = ¢}. Then{s € S|s = preimg,(¢)} = {s € S|s |=
JA'.(7h9(0) A [A’/A])} = preimg,(T).

72 CHAPTER 4. NONDETERMINISTIC PLANNING

Proof: s = 3A'.(70%0) A ¢[A’/A])
iff there iss), : A’ — {0, 1} such thats U s)) |= 77%(0) A ¢[A’/A]
iff there issf) : A’ — {0, 1} such thats}, = ¢[A’/A] and(s U sh) = 71%0) L4.10

iff there iss’ : A — {0, 1} such that’ = ¢ and(s U s})) = 71%o0) L4.12
iff there iss’ € T such tha(s U s'[A’/A]) = 71%(0)
iff there iss’ € T such thats’ € img,(s) L4.7
iff there iss’ € T such thats € preimg,(s’) (5) of L2.2
iff s € preimg,(T).
Above we define’ = s,[A/A’] (and hence), = s'[A’/A].) O

Theorem4.16LetT = {s € S|s = ¢}. Then{s € S|s = spreimg(¢)} = {s € S|s |
VA’ (Th(0) — ¢[A"/A]) A FA'.T09(0)} = spreimg(T).

Proof:
s |= VA’ .(719(0) — ¢[A’/A]) A FA".779(0)
iff s |= VA .(7790) — ¢[A’/A]) ands = IA’.77%0)
iff (sUs)) = 70900) — ¢[A’/A] for all s, : A’ — {0,1} ands = 3A".77%(0) L4.10
iff (sUsp) = 7090) or s = ¢[A’/A] forall sy : A’ — {0,1} ands = 3A’".77%(0)
iff (sUs'[A'/A]) = 1%0) ors’ =g foralls': A— {0,1} ands = 3A".70%0) L4.12
iff s’ ¢img,(s)ors’ |=¢foralls’: A— {0,1} ands = 3A".77%0) L4.7
iff s’ € img,(s) impliess’ = ¢ forall s’ : A — {0,1} ands = 3A’.71%0)
iff img,(s) C T ands = 34’.77%0)
iff img,(s) C T and there is’ : A — {0, 1} with (s U s'[A’/A]) = 77%(0) L4.10
iff img,(s) C T and there is’ : A — {0,1} with s’ € img,(s) L4.7
iff img,(s) C T and there is’ € T with s’ € img,(s)
iff img,(s) C T and there is’ € T with sos’
iff s € spreimg(T).

Above we define’ = s,[A/A’] (and hence), = s'[A’/A].) O

Corollary 4.17 Leto = (¢, (e1|---|en)) be an operator such that all; are deterministic. The
formula spreimg(¢) is logically equivalent to red(4) as given in Definition 4.1.

Proof: By Theorems 4.2 and 4.1 € S|s |= regr,(¢)} = spreimg({s € S|s = ¢}) = {s €
Sl|s = spreimg(¢)}. O

Example 4.18 Leto = (c,a A (a > b)). Then
regrd(a Ab) =cA(TA(BVa)=cA(bVa).
The transition relation o is represented by

™M) =cAd A((bVa) = V)A (e ().

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 73

The preimage of A b with respect tw is represented by

Ja'b'd (@' AY) ATIY0)) = Fa'V.((d AV)YAehd A((bVa) < V) A (ce)
= 3d'b'd.(d NV ANeA(bVa)AC)
=W (VAen(bVa)Ad)

A (eN(bVa)AC)

cA(bVa)

Hence regression for nondeterministic operators (Definition 4.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for examplg) ., img,(T'), or in terms of formulae)/ ., img,(¢) whereT =
{s € S|s = ¢}. A technique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, congigy, (¢) VV img,, (¢)
that represents the union of state sets representeddyy(¢) andimg,, (¢). By definition

Mgy, (¢) Vimgs, (¢) = (3A.(6 A 74(01)))[A/A]V (3A.(6 A Th(02)))[A/A').

Since substitution commutes with disjunction we have

Mgy, (¢) ViMgs, (¢) = (3A.(¢ A T3 (01))) V (34.(6 A 72%02)))[4/A].

Since existential abstraction commutes with disjunction we have

Mgy, (¢) VMg, (¢) = (3A.((¢ A 7i%(01)) V (6 A 73Y(02))))[4/A].

By logical equivalence finally

Mg, (¢) Vimgs, (¢) = (3A.(¢ A (T3%(01) V 74%(02)))) [A/A'].

Hence an alternative way of computing the union of imaggs,, img,(¢) is to first form the
disjunction\/ ., 7(0) and then conjoin the formula with and only once existentially abstract
the propositional variables iA.

The definitions ofreimg,(¢) andspreimg(¢) allow using\/ ., ng(o) in the same way.

Note that defining progression for arbitrary formulae (sets of states) seems to require the ex-
plicit use of existential abstraction with potential exponential increase in formula size. A simple
syntactic definition of progression similar to that of regression does not seem to be possible be-
cause the value of a state variable in a given state cannot be stated in terms of the values of the
state variables in the successor state. This is because of the asymmetry of deterministic actions:
the current state and an operator determine the successor state uniquely but the successor state
and the operator do not determine the current state uniquely. In other words, the changes that
take place are a function of the current state, but not a function of the successor state. Taking an
action erases the information that determines which changes take place between two states. This
information is visible in the predecessor state but not in the successor state.

74 CHAPTER 4. NONDETERMINISTIC PLANNING

4.3 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the seB of observable state variables.

The setB did not appear in the definition of deterministic planning. This is the salteérvable
state variablesThe idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

However, because of nondeterminism and the possibility of more than one initial state, it is
in general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial gtate (
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on tli cfedbservable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place irthe belief space the role of individual states in deterministic planning is
taken by sets of states, callbdlief states

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.3.1 Memoryless plans

We use two definitions of plans. The simpler definition, formalized as mappings from states
to operators, is applicable to fully observable planning problems only. The general definition

4.3. PROBLEM DEFINITION 75

has a sufficient generality for all kinds of planning problems, and includes the sequential plans
considered for deterministic planning as a special case.

Definition 4.19 Let (A, I, 0, G, V) be a succinct transition system. Lgbe the set of states (all
Boolean valuations oft). Then amemoryless plars a partial functiont : S — O.

To be able to execute a memoryless plan the current state must always be known, otherwise the
correct operator in general cannot be correctly chosen. Hence we always assume full observability
when using a memoryless plan. In the context of Markov decision processes (see Section 5.5)
memoryless plans are also knownpadiciesor history dependent policies

We define the satisfaction of plan objectives in terms of the transition system that is obtained
when the original transition system is being controlled by a plan, that is, the plan chooses which
of the transitions possible in a state is taken.

Definition 4.20 (Execution graph of a memoryless plan)Letw be a memoryless plan for a suc-
cinct transition systemi4, I, O, G, V). Then theexecution graplof = and the transition system is
the graph(S, E') where

1. ECSxSand
2. (s,8') € Eif s €img,(s).

The states such thats |= I areinitial nodesof the execution graph, and the statesuch that
s = G aregoal nodef the execution graph. We have introduced the nodes of an execution graph
as a notion that is separate from the states in the transition system because for the more general
notion of plans we define next these two notions do not coincide.

4.3.2 Conditional plans

Plans determine what actions are executed. We formalize plans as a form of directed graphs. Each
node is assigned an operator and information on zero or more successor nodes.

Definition 4.21 LetIl = (A, 1,0, G, V) be a succinct transition system.phanfor IT is a triple
(N, b,1) where

1. N is afinite set of nodes,
2. b C L x N maps initial states to starting nodes, and

3.1: N — O x 25%N s a function that assigns each nodean operator and a set of pairs
(¢,n’) whereg is a formula over the observable state variabléandn’ € N is a successor
node.

Nodesn with [(n) = (o, ()) for someo € O are terminal nodes

Ignoring the operators and branch formulae in a ptawe can construct a grapfi(7) =
(N,E)with E C N x N such thatn,n’) € Eiff (¢,n’) € Bfori(n) = (o, B) and somep. A
plan is acyclic if there is no non-trivial path starting and ending at the same na@érnin

Plan execution starts from a nodec N and states such that(¢,n) € b ands = I A ¢.
Execution in node: with I(n) = (o, B) proceeds by executing the operatand then testing for

76 CHAPTER 4. NONDETERMINISTIC PLANNING

each(¢,n’) € l(n) whetherg is true in all possible current states, and if itis, continuing execution
from plan noden’. At most onep may be true for this to be well-defined. Plan execution ends
when none of the branch labels matches the current state. In a terminal node plan execution
necessarily ends.

Definition 4.22 (Execution graph of a conditional plan) Let(A, I, O, G, V') be a succinct tran-
sition system anda = (N, b,[) be a plan. Defin¢he execution grapbf = as a pair(M, E) where

1. M =5 x (NU{L}), whereS is the set of Boolean valuations df

2. E C M xM has an edge fronfs,n) € SxN to(s’,n') € SxN ifandonlyifi(n) = (o, B)
and for someg,n’) € B

(@) ¢’ €img,(s) and
(b) 5" |= ¢
and an edge fron{s,n) € S x N to (s/, L) if and only if

(@) I(n) = (0, B),
(b) s’ € img,(s), and
(c) there is no(¢,n’) € B such thats’ = ¢.

The initial nodesof these execution graphs are nodes») such thats = I ands = ¢ for
some(p,n) € b.

Thegoal nodef these execution graphs are nodes:) such thats = G.

We can translate every memoryless plan to a conditional plan.

Definition 4.23 Let (A, I,0, G, V) be a succinct transition system. Lgte the set of all states
on A. Letw : S — O be a memoryless plan. DefiGgr) = (N, b, 1) where

1. N=0,
2. b= {(FMA({s € S|n(s) = o}),0)|o € O}, and
3. 1(0) = (0, {{FMA({s € S|m(s) = 0}),0')|’ € O}) forall o € O.

Above FMA(T) is a formulag such thatl’ = {s € S|s |= ¢}.

The memoryless plan corresponds the conditional pléaf(~) in the sense that the subgraphs
induced by the initial nodes are isomorphic, and this isomorphism preserves both initial and goal
nodes.

4.3.3 Decision problems

There are different types of objectives the plans may have to fulfill. The most basic one, considered
in much of Al planning research, is the reachability of a goal state. In this case every plan execution
has a finite length. Also problems with infinite plan executions can be considered. A plan does
not reach a goal and terminate, but is a continuing process that has to repeatedly reach goal states
or avoid visiting bad states. Examples of these are different kinds of maintenance tasks: keep a
building clean and transport mail from location A to location B.

4.3. PROBLEM DEFINITION 77

We consider two objectives defined in terms of finite plan executions. The first objective re-
quires, just like in deterministic planning, that a goal state is reached after a given number of
operator executions.

Not all planning problems that have an intuitively plausible solution are solvable under this
objective. A problem that s intuitively solvable is tossing a coin until it yields heads. This problem
can be in practice always solved after a small number of tosses but because there is no guaranteed
upper bound on the number of tosses that are needed, under the first objective it is not solvable.
Hence we also consider another objective.

The second objective requires that from every state that can be reached by executing the plan,
the plan is either a goal state or a goal state is reachable by executing the plan further.

The third objective we consider is defined in terms of infinite plan executions. The objective
requires that all executions of a plan are infinite, and on every execution all states that are visited
are goal states. This objective is knownragintenancdecause the transition system has to be
kept in one of the goal states.

Other infinite horizon objectives that are defined in terms of expected costs/rewards are used in
connection with probabilistic planning, see Section 5.3.

Definition 4.24 (Bounded reachability) A planz for (A, I, O, G, V') under theBounded Reach-
ability criterion fulfills the following.

For all initial nodesz in the execution graph, all paths starting frarthave a finite length and
maximal paths end in a goal node.

Definition 4.25 (Unbounded reachability) A plan = for (A,I,0,G, V) under theUnbounded
Reachabilitycriterion fulfills the following.

For all initial nodesz in the execution graph, for every to which there is a path frora there
is a path fromz’ of length> 0 to somer” such that:” is a goal node without successor nodes.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.26 (Maintenance) A plan = for (A,1,0,G,V) under theMaintenancecriterion
fulfills the following.

All nodesz in the execution graph to which there is a path of lengtld from an initial node
of the execution graph are goal nodes and have a successor node.

Example 4.27 Consider the plafV, b, [) for a problem instance with the operat6rs= {01, 02, 03},
where
N = {172}
b={(T,1)}
l(l) = <037 {<¢17 1>7 <¢27 2>a <¢3a 3>}>
l(2) - <027 {<¢47 1>7 <¢57 3>}>

This could be visualized as the program.

78 CHAPTER 4. NONDETERMINISTIC PLANNING

1 03
CASE
¢1: GOTO 1
¢2: GOTO 2
—(¢1 V ¢2): GOTO 3
2: 09
CASE
¢4 GOTO 1
—¢4: GOTO 3
3
Every plan{N, b,) can be written as such a program. |

A plan isacyclicif it is a directed acyclic graph in the usual graph theoretic sense.

4.4 Planning with full observability

Nondeterminism causes several The differences to algorithms for deterministic planning The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be hétatenk we

need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.4.1 we first discuss the simplest algorithm for planning with nondetermin-
ism and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.4.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. The algorithms can be implemented by using data structures like binary decision
diagrams which makes it possible to utilize the regularities in the state space and to solve very big
planning problems. Representation of planning problems with these logic-based data structures is
explained in Section 4.2.

4.4.1 An algorithm for constructing acyclic plans

Next we present an algorithm for constructing acyclic plans for nondeterministic problem with full
observability. Acyclicity means that during any execution of the plan no state is visited more than
once. Not all nondeterministic planning problems that have an intuitively acceptable solution have
a solution as an acyclic plan. For a more detailed discussion of this topic and related algorithms
see[Cimattiet al, 2009.

The basic algorithm is for transition systems as in Definition 2.1 but the techniques in Section
4.2 can be directly applied to obtain a logic-based algorithm for succinct transition systems (Def-
inition 2.11 in Section 2.3) that can be implemented easily by using any publicly available BDD
package.

In the first phase the algorithm computes distances of the states. In the second phase the
algorithm constructs a plan based on the distances.

'However, for every > 0 there is a finite plan that reaches the goal with probabjlity higher.

4.4. PLANNING WITH FULL OBSERVABILITY 79

distance ta?
00 3 2 1 0

Figure 4.1: Goal distances in a nondeterministic transition system

Let G be a set of states an@d a set of operators. Then we define tteckward distance sets
D?Wd for GG, O that consist of those states for which there is a guarantee of reaching a state in
with at most; operator applications.

Do = @
DPwd — pdwa |, ., spreimg (DY) for all i > 1

Definition 4.28 LetG be as set of states ar@ a set of operators, and 1gd5", D4 . be the
backward distance sets fé¥ andO. Thenthe backward distancaf a states to G is

Oifse G
9" s) = {z if s € P\ phwd

If s ¢ DPdfor all i > 0 thend2"d(s) = cc.

Example 4.29 We illustrate the distance computation by the diagram in Figure 4.1. The set of
states with distance 0 is the set of goal stdtesStates with distanceare those for which there

is an action that always leads to states with distaneel or smaller. In this example the action
depicted by the solid arrow has this property for every state. The dashed arrows depict the second
action which for no state is guaranteed to get closer to the goal states. States for which there is no
finite upper bound on the number of actions for reaching a goal state have distance |

Given the backward distance sets we can construct a plan covering all states having a finite
backward distance. Lef’ C S be those states having a finite backward distance. Thenplan
defined by assigning for everye S such that2"d(s) > 1 =(s) any operatop € O such that
img,(s) € DP"dwherei = 62"(s).

The plan execution starts from one of the initial states. As we have full observability, we may
observe the current stat&nd then execute the action corresponding to the operé&tdrreaching
one of the successor statés img,(s). The plan execution proceeds by repeatedly observing the
new current state’ and executing the associated actid®’) until the current state is a goal state.

80 CHAPTER 4. NONDETERMINISTIC PLANNING

Lemma 4.30 Let a states be in D;. Then there is a plan that reaches a goal state froby at
most; operator applications.

The algorithm can be implemented by using logic-based data structures and operations defined
in Section 4.2 by representing the set of goal states as a formula, using the logic-based operation
spreimg(¢) instead of the set-based operatispreimg(7") for computing the setsDi?Wd that
are also represented as formulae, and replacing all set-theoretic operationsaliken by the
respective logical operationsandA.

4.4.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For
unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.31 |

The problem is those states that do not have a finite strong distance as defined Section 4.4.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reach-
ability by a finitely bounded number of actions. The algorithm is based on the progeduethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
pruneis given in Figure 4.2.

We introduce some terminology. LStbe a set of state§) a set of operators, and: S — O
a mapping from states to operators. A sequesige. ., s, of states is arexecutionif for all
i € {1,...,n} there iso € O such thats; € img,(s;,—1), and it is anexecution ofx if s; €
imgx(si_l)(si,l) foralli € {1, R ,n}.

Lemma 4.32 (Procedure prune)Let S be a set of states) a set of operators and? C S a
set of states. Then the procedure call pruél,G) will terminate after a finite number of steps
returning a set of stated” C S such that there is function : W — O such that

1. for everys € W there is an executiosy, s1, .. ., s, of x with n. > 1 such thats = sy and
sy € G,

2. img,) ({s}) € W UG foreverys € W, and

3. There is no functiorr satisfying the above properties for states notinh for everys €
S\W and functionz’ : S — O there is an executiosy, . . ., s,, of 2’ such thats = sy and
there is nom > n and executio,,, s, 11, - . ., Sm Such thats,,, € G.

Proof: The proof is by two nested induction proofs that respectively correspond to the repeat-until
loops on lines 9 and 13 in the procedprene If there is no plan that is guaranteed to reach a goal
state from a state, then this is because for any plan after some number of executions stéps
possible to reach a state from which no sequence actions can reach a goal state. A plan covering

4.4. PLANNING WITH FULL OBSERVABILITY 81

procedure prune,0,G);
W_1:=5,
Wo =0
repeat
Wy = Wo;
Wo := (Wi U Uyeo Preimg, (Wi U G)) N S,
until Wy = Wg; (* States from which a goal state can be reached>by operators *)
1:=0;
repeat
=141,
k:=0;
So :=0;
repeat
k=k+1; (* States from which a state i@ is reachable with< & steps. *)
Sk = Sk—1 UU,eo (S N preimg,(Sy—1 U G) Nspreimg(W;_1 UG));
until S = Sk_1; (* States that stay withiil’;_; before reaching=. *)
Wi = S,
until W; = W;_q; (* States inl¥; stay withinl¥/; before reaching. *)
return W;

Figure 4.2: Algorithm for detecting a loop that eventually makes progress

all other states exists with an execution reaching a goal state in sateps. The outer loop and
induction go throughi = 0, 1, 2, ... and the inner loop and induction througgh= 0,1, 2,
Induction hypothesis: There is function: W; — O such that

1.
2.
3.

for everys € W, there is an executiosy, . . ., s, of x such thath > 1, s = sg ands,, € G,
img,(s)({s}) € W;—1 UG for everys € W;, and
for all functionsz’ : S — O and states € S\W; there isi’ € {0, ...,4} and an execution

s0, - - ., 8¢ Of 2’ such thaty = s and there is néd > ¢’ and execution;, s; 11, ..., s, such
thats;, € G.

Base case = 0:

1.

Wy has been computed to fulfill exactly this property. We denote the value of the variables
Wy in the end of iteratior of the first repeat-until loop by ;.

Induction hypothesis:

(a) There is a functionr : Wy ; — O such that there is an execution offor every
s € Wy ; of lengthj > 1 reaching a state it

(b) For states not il ; there is nar with this property.

Base casg = 1: After the first iterationiVy; = (J .o preimg,(G). Hence for every
s € Wy,1 assignz(s) = o for anyo such thats € preimg,(G).

(a) Now there is an execution of length 1 from anyg W) ; to a state inG.

82 CHAPTER 4. NONDETERMINISTIC PLANNING

(b) For states not iy ; no operator alone may reach a statéin

Inductive casg > 2: By induction hypothesis there is a functiomwith execution of length

j — 1 > 1 forreaching a state it for every state for which such an execution exists. We
extend this function to cover statess W ;\W; ;—1 as follows: z(s) = o for anyo such
thats € preimg,(Woy ;—1 UG).

(a) Foranys € W, ; there is an execution af reaching a state i’ because for states
s € Wy j—1 thisis by the induction hypothesis, and for state®in;\ Wy ;1 applying
the operatot:(s) may reach a state iy ;_; for which an execution reachir@ exists
by the induction hypothesis.

(b) Let s be a state such that there is a functign: S — O with an execution that
reaches from s with j steps. Hence there is a stat€for which an execution with
«’ reaches from s’ with j — 1 steps. Hence by the induction hypothesis W, ;_;
and consequently € preimg,(,(Wo ;—1). Therefore for any state not iy ; there
is no such function’.

2. AsW_y = Strivially img,) ({s}) € W_1 UG.

3. Statess € Wy\W_; are exactly those states from which no operator sequence le&ds to
by construction o#ly, as shown above.

Inductive casé > 1. For the innerepeat-untilloop we prove inductively the following.
Induction hypothesis: There is functian: Sy — O such that

1. for everys € Sj there is an executiosy, s1, ..., s, Of z such thaw € {1,...,k}, s = s
ands,, € G,

2. img,5)({s}) € Wi—1 UG for everys € Sk, and

3. for all functionsz’ : S — O and states € S\ S, either

(@) thereisi’ € {0,...,i} and an executior, . .., sy of ' such thatsy = s and there is
noh > i’ and execution;, sy 11, . .., s, such thats, € G, or

(b) there is nok’ € {1,...,k} and an executiony, ..., sy of 2’ such thatsy = s and
si € G.

Base casé = 0: SinceS, = (), cases (1) and (2) trivially hold for everyc Sy. It remains to
show the third component of the induction hypothesis.

3. For anys € S\Sy = S (3b) is satisfied because it requires executions to be longer than
k=0.

Inductive casek > 1: We extend the function: : S;_; — O to cover states irdy\Sk_1.
Let s be any state irby. If s € Sx_; then properties (1) and (2) are by the induction hypothesis.
Otherwises € Si\ Sk_1. Therefore by definition afy, s € preimg,(Sx_1UG)Nspreimg(W,;_1U
G) for someo € O.

4.4. PLANNING WITH FULL OBSERVABILITY 83

1. As s € preimg,(Sx_1 UG) for someo € O, by (4) of Lemma 2.2 either € preimg,(Sx_1)
or s € preimg,(G).

If s € preimg,(G) then we setz(s) = o. The desired execution consistsslnd a state
s eaq.

If s € preimg,(Si—1)\preimg,(G) then there is a staté € Sj_; such that’ € img,({s}).
By the induction hypothesis there is an execution: gtarting froms’ that ends in a goal
state. For such an execution is obtained by prefixing witrso we definer(s) = o.

2. Sinces € spreimg(W;_1 U G) by (2) and (3) of Lemma 2.Bng,({s}) C W;_1 UG.

3. Take anys € S\S,. Now for every operatoo € O, eithers ¢ spreimg(W;_; U G) or
s ¢ preimg,(S;_1 U G). Consider any function’ : S — O such that’/(s) = o.

In the first case by the outer induction hypothesis theré & {0,...,7 — 1} and an ex-
ecution sy, ..., sy of ’ such thatsy, € img,(s) and there is nd» > 4’ and execution
siry Sira1, - - -5 Sp SUCh thats, € G. Hence executing first could similarly lead to the state
s;» from which no goal could be reached, now requirirgieps.

In the second case by the inner induction hypothesis fof a&limg,(s) there is no execu-
tion of lengthk — 1 ending in a goal state.

Since this holds for any € O, everyz’ has one of these properties.

This completes the inner induction. To establish the induction step of the outer induction
consider the following. The inner repeat-until loops ends whgn= Si_;. This means that
S, = Sk for all z > k. Hence executions for reaching a goal state for (1) and (3) are allowed to
have arbitrarily high lengtk. The outer induction hypothesis is obtained from the inner induction
hypothesis by removing the upper bound and replasingy ;. By constructiori¥V; = Sj.

This finishes the outer induction proof. The claim of the lemma is obtained from the outer
induction hypothesis by noticing that the outer loop exits wHén= W;_; (it will exit after a
finite number of iterations becau$g, is finite and its size decreases on every iteration) and by
replacing bothV; andW;_; by W we obtain the claim of the lemma. O

The algorithm in Figure 4.3 usgsuneto identify states from which a goal state is reachable
by some execution and no execution leads to a state outside the set. On line 4 the algorithm tests
whether the reachability of a goal state can be guaranteed for the initial states. If not, the algorithm
terminates. Starting on line 7 the algorithm computeswiak backward distancee G for all
states inL. Finally, starting on line 11 the algorithm assigns every state\i@ an operator that
may reduce the distance to a goal by one.

4.4.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state and
then stop execution. Aaintanence goas a goal that has to hold in all time points. To achieve a
maintenance goals a plan has to keep the state of the system in a goal state indefinitely.

Plans that satisfy a maintenance goal have only infinite executions.

Figure 4.4 gives an algorithm for finding plans for maintenance goals. The algorithm starts
with the setG of all states that satisfy the property to be maintained. Then iteratively such states

84 CHAPTER 4. NONDETERMINISTIC PLANNING

procedure FOplancyclic(1,0,G)
S :=the set of all states;
L :=GU prune,0,G);
if I Z L then return false;
Dy =G, (* States with weak backward distance 0 *)
7:=1;
repeat
D;:=D;_1 UU,co(preimg,(D;_1) Nspreimg(L));
9: 1:=1+1;
10: until D; = D;_q;
11: foreachs € D;\G do

12: d := number such that € Dy\Dy_1; (* State has weak backward distané¢e*)
13: assignr(s) := o such thaimg,(s) C L andimg,(s) N Dy_1 # 0;
14: enddo

Figure 4.3: Algorithm for nondeterministic planning with full observability

procedure FOplanMAINTENANCE({,0,G)
1:=0;
Go =G,
repeat
=04 1; (* The subset of7;_; from whichG;_; can be always reached. *)
Gi :=U,eo (spreimg(Gi—1) N Gi—1);
until G; = Gi_1;
return Gj;
foreachs € GG; do
assignr(s) := o such thaimg,(s) C Gj;
end do

=
POQOONIRWNRE

=

Figure 4.4: Algorithm for nondeterministic planning with full observability and maintenance goals

4.4. PLANNING WITH FULL OBSERVABILITY 85

are removed fronts for which the satisfaction of the property cannot be guaranteed in the next
time point. More precisely, the se€s; for i > 0 consist of all those states in which the goal
objective can be maintained for the neéxime points. For someéthe setd7; andG;_; coincide,

and thenG; = G for all j > . This means that starting from the state€:inthe goal objective

can be maintained indefinitely.

Theorem 4.33 Let I be a set of initial stateg) a set of operator and- a set of goal states. Let
G’ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.4.

ThenG’ C G and there is a planr such that img,)(s) € G’ for everys € G, and for every
s € S\G’ and every plarr’ there isn > 1 and and an executiosy, . . . , s, of ©’ with s = s such
thats,, ¢ G.

Proof:
Induction hypothesis:

1. G; C G,
2. there is a plamr such thaimg,,(s) € G, for everys € G;, and

3. for everys € S\G; and every plarr’ there isn € {1,...,i} and an executioR, ..., s,
of «’ with so = s such thats,, ¢ G.

Base case = 1:
1. G1 € Gy = G by construction.

2. By constructionG'y = |, (spreimg(Go) N Go). Hence for every € G there iso € O
such that € spreimg(Go) NGo C spreimg(Go). Hencemg,(s) C Go. Definer(s) = o.
Henceimg,(,)(s) C Go for everys € G1.

3. Consider any € S\G;. For everyo € O img,(s) € Gy = G because ¢ G;. Hence for
everys € S\G; and every plan’ there is an executiosy, s; of 7’ with so = s such that
S1 ¢ G.

Inductive caseé > 2:
1. AsG; C G;_1 and by the induction hypothedis, | C G, G; C G.

2. By constructionG;; = (J,co(spreimg(G;—1) N Gi—1). Hence for every € G; there is
o € O such thats € spreimg(G;_1) N G;—1 C spreimg(G,_1). Henceimg,(s) C G;_1.
Definer(s) = o. Hence there is a plan such thaimg,,(s) € G, for everys € G;.

3. Consider any € S\G;. Hences ¢ spreimg(G;_1) for everyo € O. Hence for every
o € O thereiss’ € S\G;_; such thats’ € img,(s). By the induction hypothesis for every

plant’ thereisn € {1,...,7 — 1} and an executiosy, . . ., s,, of 7’ with so = s’ such that
sn € G. Hence for every plam’ there is alsav’ = n + 1 € {1,...,i} and an execution
s, 80, - .., 5p Of @ with 5o = s’ such thats,, ¢ G.

Becausé>; are finite sets and; C G;_; and everyG; is a function ofG;, G; = G for
some;j and the loop iteration terminates after a finite number of iterations.
Now the claim of the lemma are obtained as follows.

86 CHAPTER 4. NONDETERMINISTIC PLANNING

PASTURE - PASTURE

DESERT
RIVER
PASTURE PASTURE
DESERT! DESERT
RIVER RIVER

Figure 4.5: Example run of the algorithm for maintenance goals

1. TheG' thatis returned i&’ = G;. By the induction proot7; C G.

2. By the termination condition of the loo@; = G;4+1 = G’. Hence by the results of the
induction proof there is a plam such thaimg,) (s) € G’ for everys € G'.

3. Because&’ = G; = Gj_1 andGj is a function ofG;_;, the sets7, for all £ > j equal
G;. Hence the constant for the length of executions leading outsidecan be arbitrarily
high. By the results of the induction proof for everye S\G’ and everyr’ there isn > 0
and an executioRy, . . ., s, of 7’ with so = s such thats,, ¢ G.

O

Example 4.34 Consider the problem depicted in Figure 4.5. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time point after respectively leaving the pasture or the river. If either one
reaches level 3 the animal dies. The hunger and thirst levels are indicated by different colors: the
upper halves of the rectanges show thirst level and the lower halves the hunger level. Blue means
no hunger or thirst, red means much hunger or thirst. The upper left diagram shows all the possible
actions the animal can take. The objective of the animal is to stay alive. The three iterations of the

4.5. PLANNING WITHOUT OBSERVABILITY 87

i2 02

il ol

i0 o0

Figure 4.6: A sorting network with three inputs

algorithm for finding a plan that satisfies the goal of staying alive are depicted by the remaining
three diagrams. The diagram on upper right depicts all the states that satisfy the goal. The diagram
on lower left depicts all the states that satisfy the goal and after which the satisfaction of the goal
can be guaranteed for at least one time period. The diagram on lower right depicts all the states
that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least two
time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. |

4.5 Planning without observability

4.5.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.35 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd editioconsists of a se-
guence of gates acting on a number of input lines. Each gate combines a comparator and a swap-
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.6 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states af®, 001,010,011, 100,101,110, 111. and the
goal states ar800,001,011,111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sortO1 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.

88 CHAPTER 4. NONDETERMINISTIC PLANNING

000, 001, 010,011,100, 101,110,111 initially

000,001,011, 100,101,111 after sort12
000,001,011,101,111 after sort02
000,001,011,111 after sort01

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The differ-
ence to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusiga:test regr, (¢) for the belief
states. With one initial state this is an easy polynomial timeltéstregr,(¢) of whethemegr,(¢)
is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the backward distances in the state space.

Dy =G
Dii1 = D; U, o Spreimg(D;) foralli > 1

A lower bound on plan length for belief stateis j if Z C D; andZ € D;_;.
Next we derive distance heuristics for the belief space based on state space distances. Backward
distances yield an admissible distance heuristic for belief states.

Definition 4.36 (State space distanceThestate space distanoé a belief staté3 isd > 1 when
BC DgandB € Dy 1,anditisO whenB C Dy = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.

4.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 89

Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.

In forward search, prefer operators that maximally decrease the cardinality of the belief state.

In backward search, prefer operators that maximally increase the cardinality of the belief state.

These heuristics are not in general admissible, because there is no direct connection between
the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.6 Planning as satisfiability in the propositional logic and QBF

The techniques presented in Sections 3.6 and 3.6.5 can be extended to nondeterministic operators.
The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators anda state such that |= ¢ for every(c,e) € T andFE; U --- U
E, is consistent for for anys; € [ei]s,i € {1,...,n} andT = {(c1,e1),...(cn,en)}. Then
defineimgr(s) as the set of states that are obtained from by makingF; U --- U E, true ins
whereE; € [e;]s for everyi € {1,...,n}. We also use the notatior¥'s’ for s’ € imgr(s) and

imgr(S) = Uses imar(s).

4.6.1 Advanced translation of nondeterministic operators into propositional logic

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae in the
propositional logic. This translation is not sufficient for reasoning about actions and plans in a
setting with more than one agent. This is because the formif{e;) v - -- v 71%0,,) do not
distinguish between the choice of operatofin, ..., 0,} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quantified
Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPG(e) in Definition 3.1, so that fot to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that imekes

The operators are assumed to be in normal form. For simplicity of presentation we further
transform nondeterministic choiceg|- - - |e, so that only binary choices exist. For example
alb|c|d is replaced by(a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary
variable.

The condition for the atomic effeétto be executed whenis executed iE€PC (e, o). The
sequence of integers is used for deriving unique names for auxiliary variabl&Rg (e, 7).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and

90 CHAPTER 4. NONDETERMINISTIC PLANNING

conjunctions.

EPCY(e,0) = EPG(e) if e is deterministic
EPCY(e;|es, o) = (2o NEPCY(e1,01)) V (w25 AEPCH¥(e2,01))
EPCY(e1 A+ Aep,0) = EPCY(e1,01) V- - -V EPCG¥(ep, on)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.6.4. Nondeterminism is encoded by making
the effects conditional on the values of the auxiliary variablgs Different valuations of these
auxiliary variables correspond to different nondeterministic effects.

The following frame axioms express the conditions under which state variabdest may
change from true to false and from false to true. > . . , e,, be the effects oé4, . .., 0, respec-
tively. Each operatos € O has a unique integer indéX(o).

(a A =a’)—((o1 NEPCY (e1,(01))) V - -+ V (0n A EPCY (e, 2(01))))
(ma A a')—((o1 NEPCM(e1,9Q(01))) V- - V (0, ANEPCM(e,,2(01))))

Foro = (c,e) € O there is a formula for describing values of state variables in the predecessor
and successor states when the operator is applied.

(o—c)A
Nacalo NEPG(e, (o)) — ')A
Naealo NEPCI (e, Q(0)) — a')

Example 4.37 Considero; = (—a, (b|(c > d)) A (alc)) andog = (=b, (((d > b)|c)|a)). The
application of these operators is described by the following formulae.

=(a A —ad’) (ma A a')— ((01 A x12) V (02 A —2))

—(b A b)) (=bAV)— ((01 Ax11) V (02 Ao A xo1 Ad))
=(c A=) (me N)= ((01 A —x12) V (02 A 29 A —91))
—(d N —d) (mdANd)— (01 A —x11 Ac)

01 —7a

(01 /\1:12)—>a’ (01 /\l‘u)—>b/

(01 AN —|l'12) —c (01 N =211 A C) —d

02—>—\b

(09 A\ —z9) —d (03 Ao N xoy ANd)—b

(02 N x2 N\ —|l’21> —C
[

Two operators ando’ may be applied in parallel only if they do not interfere. Hence we use
formulae
=(oAd)

for all operators) ando’ that interfere anad +# o'.
Let X be the set of auxiliary variables; in all the above formulae. The conjunction of all the
above formulae is denoted by
R3(A, A, O, X).

4.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 91

We use two lemmata for proving properties about these formulae and the translation of nonde-
terministic operators into the propositional logic.

Let=,(e) be the set of propositional variableg in the translation of the effeetwith a given
o. This is equal to the set of variables. in formulaeEPC!?(e, o) and EPC (e, o)) for all
a € A.

Definition 4.38 Define the set of literalge]s” which are the active effects efwhene is exe-
cuted in states and nondeterministic choices are determined by the valuatiohpropositional
variables inZ, (e) as follows.

[e]2” = [e]% if e is deterministic
ow eIV ifu(z,) =1
lerfea]s™ = {[ez]glﬂ’ if v(z,) = 0
[er A Aep)T” = [ed] I U--- U fen] 3™

0,V;

Lemma 4.39 Let s be a state anqvy, ..., v,} all valuations of=,(e). ThenJ,.,;.,,[e]s"™ =

[€]s.

Lemma4.40 Let O and T C O be sets of operators; and s’ states,v,, a valuation of X
Ute,eyeo Ea(ee) (€), andu, a valuation ofO such thatv, (o) = 1iff o € T.
Thens U s'[A"/A] U v, Uvy = R3(A, A, 0, X) if and only if

1. s = aiff &' = aforall a € A suchthat{a,~a} N U<C7€>€T[e]?(<c’e>)’”‘” =0,

Q({c,e)),vz
2.5/ = Upegerlels ™, and
3. sk=cforall (c,e) € T.

The number of auxiliary variables, can be reduced when two operatorando’ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed fera subset of those far or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulaeRs(A, A’, O, X') can be used for plan search with algorithms that evaluate QBF
(Section 4.6.2) as well as for testing by a satisfiability algorithm whether a conditional plan (with
full, partial or no observability) that allows several operators simultaneously indeed is a valid plan.

4.6.2 Finding plans by evaluation of QBF

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence of
operators so that a goal state is reached when the operators are applied starting in the initial state.
When there are several initial states, the operators are nondeterministic and it is not possible to
use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely

92 CHAPTER 4. NONDETERMINISTIC PLANNING

expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of an-step partially-ordered plan that reaches a state satistyifigpm any
state satisfying the formulacan be tested by evaluating the QBE® defined as

ElVplanvvndzivexec
10— (R3(A%, AL, 0%, XO) A R3(AL, A2, O, X1) A+ AR3(AM L, A7 O~ X1 A G™).

HereVpan=0U--- U 0" 1, Vog= AU XU U X" andVexec= At U--- U A™. Define
dIPaM _ 10, (R5(A°, AL, 00, XO)ARs(AL, A2, 01, XA+ - AR5 (A", An Ot X"=1)A

G"™). The valuation of/,jan corresponds to a sequence of sets of operators. For a given valuation
of Vpian @any valuation of/;,q determines an execution of these operators. The valuatibg&fis
uniquely determined by the valuation Bfjan U Vig.

The algorithms for evaluating QBF that extend the Davis-Putham procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBFtisie then these algorithms return a valuation of
the outermost existential variables. For a t®f®" this valuation ofl/jan corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.6.5.

4.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 93

Theorem 4.41 The QBF®P?" has valuetrueiif and only if there is a sequend®,, . .., T,,_, of
sets of operators such that for everg {0, ...,n} and every state sequengg . . ., s; such that

1. so = I and
2. sodps1T1s2-+-5i-1T5-15;

T; is applicable ins; if i < n ands; = G if i = n.

Proof: We first prove the implication from left to right. Sinég"?" is true there is a valuation

Uptan Of Vplan = O° U - - - U O"~! such that for all valuations,,; of Vog = A°UX°U- ..U X!
there is a valuatione,e. Of Vexee = A' U -+ U A" such thatvpan U vng U Vezee E 10 —
(R3(A°, AL, 0% XO) A - ARz (AP, A™ O X1 A G™).

Let Ty, ..., T,_1 be the sequence of sets of operators such that fos al O andi €
{0,...,n — 1}, 0 € T; if and only if v, (0') = 1. We prove the right hand side of the the-
orem by induction om.

Induction hypothesis: For evesy, . .., s; such thatsg = I andsoTos171s2 - - si—1T5-15i:

1. T; is applicable irs; if i < n.
Base caseé = 0: Let sy be any state sequence such thal= 1.

1. If 0 < n then we have to show thdy is applicable insg.
LetE = By U---UE, forall j € {1,...,m} and anyE; € [e;]s,, Whereey, ..., ey,
are respectively the effects of the operators . ., o, in Ty. Such setd are the possible
active effects off.

We have to show thalt is consistent and the preconditions of operatofkjiare true insg.

By Lemma 4.39 there is a valuatierof X such that? = |, e, [e]2eeny,

Letv,q be any valuation oFqq such thatsg[A°/A] C v,q andv[X°/X] C v,,4. Sinced P
is true there is a valuation f ;.. SUCh that,e, U vy U vezee = TP,

Sincevyy | 1° alsovpiay, Uvng Uvezee = R3(A°, AL, 0% X0). Hence by Lemma 4.40 the
preconditions of operators ify, are true insgp ands; = E wheres; is the state such that
51(a) = vegec(at) for all a € A. SinceE was chosen arbitrarily from the sets of possible
sets of active effects dfy and it is consistent[} is applicable insg.

2. 1f n = 0 thenVpan = Vexec = 0 andVVpg(I® — GY) is true, andv,, = G° for every
valuationuv,,q of Vg such thaty,,4 = 1°.

Inductive case > 1: Letsy, ..., s; be any sequence such that— I andsoTpsi . . . si—1Ti—15i.

1. If i < n then we have to show thdt is applicable ins;.

LetE = EyU---UEy,forall j € {1,...,m} and anyE} € [e;]s,, Whereey, ..., e, are
respectively the effects of the operatoss. . . , o,,, in T;. Such set€ are the possible active
effects ofT;.

We have to show thak is consistent and the preconditions of operators;iare true ins;.

94 CHAPTER 4. NONDETERMINISTIC PLANNING

By Lemma 4.39 there is a valuatiorof X such thatt? = U, .yer, [e] 2D,

Since by the induction hypothesisT;s;; forall j € {0,...,i — 1}, by Lemma 4.39 for
everyj € {0,...,i—1} there is a valuation? of X such that;[A/A7]Us;1[A’/A7HU
vo Ui = R3(A, A, O, X) wherev, assigns every € O value 1iffo € Tj.

Let v,4 be any valuation of/;g such thatsg[A°/A] C v,q andv[X?/X] C w,q and
v [X7/X] C g forallj € {0,...,i—1}.

Since®{*" is true there is a valuation af ;.. SUch thatyia, U vng U vegee = @I,

Sincev,q | 1° alsovpian U vng U Vezee = R3(AL AL O, X7). Hence by Lemma 4.40
the preconditions of operators i are true ins; ands;1 = F wheres; 1 is a state such
thats; 1 1(a) = vezec(a’™!) for all a € A. Since anyE is consistent; is applicable ins;.

2. If i = n we have to show that, = G. Like in the proof for the previous case we construct
valuationsv,,; andve,.. matching the executiosy, . . ., s,, and sinCey,q, U Vg U Vegee =
1°— G™ we haves,, = G.

Then we prove the implication from right to left. So there is sequéijce. ., T;,_1 for which
all executions are defined and redgh

We show that*®" is true: there is valuation,, of Vpan = O° U --- U O"~! such that for
every valuation,,; of Voqg = A°UXOU. . .UX ™! there is a valuation, . Of Vexee= A'U- - -UA™
such thawpia, U vpg U Vegee = DI,

We define the valuatiom,;,, of Vpan by o € T; iff uphm(oi) = 1 for everyo € O and
ie€{0,...,n—1}.

Take any valuation,,; of Vpq. Define the stateq by so(a) = 1 iff v,q(a’) = 1 for every
a € A.

If s K 1 thenv,g = 10 andvpian U vpg U vezee = @3P2™ for any valuationsese. of Vexeo

It remains to consider the casg|= I.

Define for everyi € {1,...,n} setsE; and states; as follows.

1. Letv! be avaluation ofX such that! (z) = v,q(z'~!) for everyz € X.

Q({c,e ,Ui
2. Let E;, = U(c,e)GTi_l[e]Si(}l 2 .

We show below that this is the set of literals made trughy in s; 1.
3. Defines;(a) = 1iff a € E; or s;—1(a) = 1 and—a ¢ E;, for everya € A.

Let vegee = 51[AY/A]U -+ U s,[A"/A].
Induction hypothesisu,ian, U vna U s1[A /AU~ - U s;[AT/A] = 19 AR3(A%, AL, 0% XO) A
S AR3(ATH AL, O X ands;T)s 41 forall j € {0,...,i — 1}
Base casé = 0: Trivial becausey,q = I°.
Inductive case > 1: Let v, C wv,q be the valuation ofX’~! determined byv,; and let
v, be the valuation 0*~! such thatv,(0) = vpian(0'!) for everyo € O. By Lemma 4.40
Uplan U Vng U si—1[AT1 /Al U 5;[A7/A] |E Ra(AT1, AL, O X71). This together with the

claim of the induction hypothesis for— 1 establishes the first part of the claim of the hypothesis

for i. By Lemma 4.39 the séf; is one of the possible sets of active effectdpf; in s;_1. Hence
s;—1T;—1s;. This finishes the induction proof.

4.7. PLANNING WITH PARTIAL OBSERVABILITY 95

Hencevpian U vng U vegee | 10 A R3(A%, AL, O XO) A - A Rg(A™L, A, O~ Xy,
andvegze. = G™ becauss,, |= G by assumption ang,[A" /A] C vegec- O

4.7 Planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.3.1.

When executing operatorin belief stateB the set of possible successor statesiig, (B), and
based on the observation that are made, this set is restrici¢dtamg,(B) N C whereC' is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With
branching the sequence of operators may depend on the observations, and this makes it possible
to reach goals also when no fixed sequence of operators reaches the goals. Like strong preimages
in backward search correspond to images, the question arises what does branching correspond to
in backward search?

Example 4.42 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.7. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that sub-
sume two existing belief states in one observational class. The first diagram depicts the construc-
tion of the belief state consisting of both states in which A and B are clear and C is under either A
or B. This belief state is obtained as the strong preimage of the union of two existing belief states,
the one in which all blocks are on the table and the one in which A is on the table and B is on top
of C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief

96 CHAPTER 4. NONDETERMINISTIC PLANNING

VR V[
ARG E
!
!
A E [EE e e
EREEEEE NG [
0o oo |
‘
!
!

! !
!

)i)
mojionlk

—— L o

Figure 4.7: Solution of a simple blocks world problem

states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.
The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.8 (order of construction is from the end to the beginning.)
[

We restrict to acyclic plans. Construction of cyclic plans requires looking at more global prop-
erties of transition graphs than what is needed for acyclic plans. Taking these local properties into
account is difficult because we want to avoid explicit enumeration of the belief states.

4.7.1 Problem representation

Now we introduce the representation for sets of state sets for which a plan for reaching goal states
exists.

4.7. PLANNING WITH PARTIAL OBSERVABILITY

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9
15:
move-C-onto-table
14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1
13:
move-B-onto-table
12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3
11:
move-A-onto-table
10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

move-C-onto-table

IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

move-B-onto-table

IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

move-A-onto-table

IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

move-C-onto-table
GOTO end

move-B-onto-table
GOTO end
1
move-A-onto-table
end:

Figure 4.8: A plan for a partially observable blocks world problem

98 CHAPTER 4. NONDETERMINISTIC PLANNING

In the following example states are viewed as valuations of state variables, and the observa-
tional classes correspond to valuations of those state variables that are observable.

Example 4.43 Consider the blocks world with the state variabddsar(X) observable, allowing
to observe the topmost block of each stack. With three blocks there are 7 observational classes
because there are 7 valuations| ofear(A) clear(B) clear(C) with at least one block clear.

Consider the problem of trying to reach the state in which all blocks are on the table. For each
block there is an action for moving it onto the table from wherever it was before. If a block cannot
be moved nothing happens. Inltlally we only have the empty plan for the goal states.

el IEIELE

t t
8] |

i
T T T

Then we compute the preimages of this set with actions that respectively put the blocks A, B
and C onto the table, and split the resultlng sets to the dlfferent observatlonal classes.

? ? I I I

B

(o]

preimage of A—onto—table
preimage of B—onto—table

preimage of C—onto—table

Now for these 7 belief states we have a plan consisting of one or zero actions. But we also
have plans for sets of states that are only represented implicitly. These involve branching. For
example, we have a plan for the state set consisting of the four states in which respectively all
blocks are on the table, Ais on C, Ais on B, and B is on A. This plan first makes observations
and branches, and then executes the plan associated with the belief state obtained in each case.
Because 3 observational classes each have 2 belief states, theteraarimal state sets with a
branching plan. From each class only one belief state can be chosen because observations cannot
distinguish between belief states in the same class.

We can find more belief states that have plans by computing preimages of existing belief states.
Let us choose the belief states in which respectively all blocks are on the table, B ison C, Cis on
B, and Cis on A, and compute their union’s preimage with A-onto-table. The preimage intersected
with the observational classes yields new belief states: for the class with A and B clear there is a
new 2-state belief state covering both previous belief states in the class, and for the class with A
clear there is a new 2-state belief state.

4.7. PLANNING WITH PARTIAL OBSERVABILITY 99

Computation of further preimages yields for each observational class a belief state covering all
the states in that class, and hence a plan for every belief state. |

Next we formalize the framework in detail.

Definition 4.44 (Belief space)Let P = (C4, ..., C),) be a partition of the set of all states. Then
a belief spacés ann-tuple (G4, ..., G,,) whereG; C 2% forall i € {1,...,n} andB ¢ B’ for
allie{1,...,n} and{B, B’} C G,.

Note that in each component of a belief space we only have set-inclusion maximal belief states.
The simplest belief spaces are obtained from et states asF(B) = ({C1 N B}, ..., {C, N
B}). Abelief space is extended as follows.

Definition 4.45 (Extension) LetP = (C4,.. ., C,) be the partition of all states7 = (G1,...,G,)

a belief space, and a set of states. Defi@® 7 as(G1VU(T'NCY),...,G,U(T'NCy,)) where the
operationy adds the latter set of states to the former set of sets of states and eliminates sets that
are not set-inclusion maximal, defined@®V = {R e UU{V}|R ¢ K forall K € UU{V }}.

A belief spaceG = (G1,...,Gy) represents the set of sets of stateg@at= {B; U --- U
B,|B; € G;foralli € {1,...,n}} and its cardinality isG1| - |G2| - ... - |Gy|.

4.7.2 Complexity of basic operations

The basic operations on belief spaces needed in planning algorithms are testing the membership
of a set of states in a belief space, and finding a set of states whose preimage with respect to an
action is not contained in the belief space. Next we analyze the complexity of these operations.

Theorem 4.46 For belief spacess and state set®, testing whether there i8’ € flat(G) such
that B C B’, and computing= & B takes polynomial time.

Proof: Idea: A linear number of set-inclusion tests suffices. O

Our algorithm for extending belief spaces by computing the preimage of a set of states (Lemma 4.48)
uses exhaustive search and runs in worst-case exponential time. This asymptotic worst-case com-
plexity is very likely the best possible because the problem is NP-hard. Our proof for this fact
is a reduction from SAT: represent each clause as the set of literals that are not in it, and then a
satisfying assignment is a set of literals that is not included in any of the sets, corresponding to the
same question about belief spaces.

100 CHAPTER 4. NONDETERMINISTIC PLANNING

Theorem 4.47 Testing if for belief spacé& there isR ¢ flat(G) such that preimg(R) ¢ R’ for
all R’ € flat(G) is NP-complete. This holds even for deterministic actians

Proof: Membership is easy: FaF = (Gy,...,G,) choose nondeterministicallig; € G; for
everyi € {1,...,n}, computeR = preimg,(R; U --- U R,,), and verify thatR N C; ¢ B for
somei € {1,...,n} and allB € G;. Each of these steps takes only polynomial time.

LetT = {ci,...,cn} be a set of clauses over propositiatis= {a1,...,a;}. We define a
belief space based on stafes, . . ., ax, a1, . .., ak, 21, . - ., 2k, 21, - - - , 2k }. The stateg represent
negative literals. Define

¢, = (A\¢)U{ala € A,—~a & ¢;}forie {1,...,m},
G = EL{CII, o '7c;n}7 {{21}7 {21}}7 R {{Zk}v {2k}}>)

We claim that? is satisfiable if and only if there i8 < flat(G) such thapreimg,(B) £ B’
for all B’ € flat(G).

AssumeT is satisfiable, that is, there i such thatV/ = T'. DefineM’ = {z;|a; € A, M |
a;}U{zi|a; € A, M ~ a;}. Now M’ C B for someB < flat(G) because from each class only one
of {z;} or{z;} is taken. LetM” = preimg,(M’) = {a; € A|M = a;} U{a;|la; € A, M ¥ a;}.
We show thatV/” ¢ B for all B € flat(G). Take anyi € {1,...,m}. BecauseVl = ¢;, there is
aj € ¢;NAsuchthatM = a; (or —a; € ¢;, for which the proof goes similarly.) Now; € M,
and therefore; € M". Also, a; ¢ . As there is such aa; (or —a;) for everyi € {1,...,m},
M" is not a subset of any/, and hencé\/” ¢ B for all B € flat(G).

Assume there i3 € flat(G) such thatD = preimg,(B) ¢ B’ for all B’ € flat(G). Now
D is a subset oA U {a|la € A} with at most one of;; anda, for any: € {1,...,k}. Define a
model M such that for ale € A, M = aifand only ifa € D. We show thatV/ = T'. Take
anyi € {1,...,m} (corresponding to a clause.) A3 Z B for all B € flat(G), D ¢ c,. Hence
there isa; or a; in D\c,. Consider the case witly; (a; goes similarly.) Asy; & ¢}, a; € ¢;. By
definition of M, M = a; and hencél/ = ¢;. Asthisholds forali € {1,...,m}, M =T7. O

4.7.3 Algorithms

Based on the problem representation in the preceding section, we devise a planning algorithm
that repeatedly identifies new belief states (and associated plans) until a plan covering the initial
states is found. The algorithm in Figure 4.10 tests for plan existence; further book-keeping is
needed for outputting a plan. The size of the plan is proportional to the number of iterations the
algorithm performs, and outputting the plan takes polynomial time in the size of the plan. The
algorithm uses the subproceddmednew(Figure 4.9) for extending the belief space (this is the
NP-hard subproblem from Theorem 4.47). Our implementation of the subprocedure orders sets
f1,-.., fm by cardinality in a decreasing order: bigger belief states are tried first. We also use
a simple pruning technique for deterministic actiensf preimg,(f;) C preimg,(f;) for some:

andj such that > j, then we may ignorg;.

Lemma 4.48 Let H be a belief space and an action. The procedure call findnewd{,F, H)
returns a setB’ of states such thaB’ = preimg,(B) for someB € flat(F) and B* £ B” for all
B" € flat(H), and if no such belief state exists it retuths

4.7. PLANNING WITH PARTIAL OBSERVABILITY 101

procedure findnewp,A,F,H);
if = () andpreimg,(A) Z B forall B € flat(H)
then return A4;
if = () then return (;
Fis{{f1,..., fm}, Fs,..., Fy) for somek > 1;
fori:=1tomdo

B :=findnewp,A U f;,(F>, ..., Fy),H);

if B # () then return B;
end;
return (;

=

Figure 4.9: Algorithm for finding new belief states

procedure plan(/,0,G);
H :=F(G);
progress :=true;
while progress and ¢ I’ for all I’ € flat(H) do
progress = false;
for eacho € O do
B = findnewp,),H ,H);
if B # () then
9: begin
10: H = H @ preimg,(B);
11: progress = true;
12: end;
13: end;
14: end;
15: if I C I’ for somel’ € flat(H) then return true
16: else returnfalse;

Figure 4.10: Algorithm for planning with partial observability

Proof: Sketch: The procedure goes through the elem@sts. .., B,,) of F} x --- x F,, and tests
whethermpreimg,(B; U---U By,) isin H. The setsB; U- - - U B,, are the elements of flgk’). The
traversal through; x --- x F,, is by generating a search tree with element$'pfs children of

the root node, elements &% as children of every child of the root node, and so on, and testing
whether the preimage is ifl. The second parameter of the procedure represents the state set
constructed so far from the belief space, the third parameter is the remaining belief space, and the
last parameter is the belief space that is to be extended, that is, the new belief state may not belong
toit. O

The correctness proof of the procedylan consists of the following lemma and theorems.
The first lemma simply says that extending a belief spdcis monotonic in the sense that the
members of flgtH) can only become bigger.

Lemma 4.49 Assumél’ is any set of states anfl € flat(H). Then there i3’ € flat(H ¢ T') so
that B C B'.

102 CHAPTER 4. NONDETERMINISTIC PLANNING

The second lemma says that if we have belief states in different observational classes such that
each is included in a belief state of a belief spatehen there is a set in fig) that includes all
these belief states.

Lemma 4.50 Let By, ..., B, be sets of states so that for evene {1,...,n} there isB, €
flat(H) such thatB; C B], and there is no observational clagéssuch that for soméi, j} C
{1,...,n} bothi # jandB; N C # @ and B; N C # (. Then there isB’ € flat(H) such that
BiU---UB, CB.

The proof of the next theorem shows how the algorithm is capable of finding any plan by
constructing it bottom up starting from the leaf nodes. The construction is based on first assigning
a belief state to each node in the plan, and then showing that the algorithm reaches that belief state
from the goal states by repeated computation of preimages.

Theorem 4.51 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.10 returngrue.

Proof: Assume that there is a pldiV, b, [) for a problem instancés, I, O, G, P). We assume that
states inS' are valuations of a set of state variables. Label all nodes of the plan as follows. Each
initial noden; for i € {1,...,m} with {(¢1,n1),..., (¢m,nm)} We assign the label (n;) =
{s € I|s |= oi}.

When all parent nodes, . . ., n,,) of a noden have a label, we assign a labelktoLet!(n;) =
(0i, {{i,n),...}) foralli € {1,...,m}. ThenZ(n) = Ucqr,. ny{s € 1M, (Z(ni))|s = ¢i}-

If the above labeling does not assign anything to a nodiaen assigrZ (n) = (). Each node is
labeled with exactly those states that are possible in that node on some execution.

We show that if plans fo# (n,), ..., Z(ny) exist, wheren;, ..., n; are children of a node,
then the algorithm determines that a plan #n) exists as well.

Induction hypothesis: for every plan nodesuch that all paths from it to a terminal node have
lengthi or less,B = Z(n) is a subset of somB’ € flat(H) whereH is the value of the program
variableH after thewhile loop exits andH could not be extended further.

Base caseé = 0: Terminal nodes of the plan are labeled with subset§.0By Lemma 4.49
there isG’ such thalG C G’ andG’ € flat(H) because initiallyd = F(G) and thereafter it was
repeatedly extended.

Inductive caseé > 1: Letn be a plan node with(n) = (o, {(¢1,n1), ..., (¢r, nk) }.

We show thatZ(n) C B for someB < flat(H).

By the induction hypothesig(n;) C B for someB € flat(H) foralli € {1,...,k}.

Foralli € {1,...,k} {s € img,(Z(n))|s = ¢i} T Z(n;).

Hence by Lemma 4.5 = U;cqy jy{s € ima(Z(n))|s = ¢;} C B’ for someB’ €
flat(H). Assume that there is no sud’. But now by Lemma 4.48 findnew(),H,H) would
return B” such thatpreimg,(B"”) ¢ B for all B € flat(H), and thewhile loop could not have
exited with H, contrary to our assumption abatt O

Theorem 4.52 LetIl = (S, 1,0, G, P) be a problem instance. If plahO,G) returnstrue, then
IT has a solution plan.

Proof: Let Hy, Hy, . .. be the sequence of belief spadégproduced by the algorithm.

4.8. COMPUTATIONAL COMPLEXITY 103

Induction hypothesis: For evety € H; ; forsomej € {1,...,n} andH; = (H;1,...,H;)
a plan reaching- exists.

Base case = 0: Every component off, consists of a subset 6f. The empty plan reachés.

Inductive case > 1: H,,; is obtained ad{; & preimg,(B) where B = findnewp,),H;,H;)
ando is an operator.

By Lemma 4.48B € flat(H;). By the induction hypothesis there are plandor every B N
Ci,i € {1,...,n}. The plan that executesfollowed by 7; on observatiorC; reaches7 from
preimg,(B).

Let B’ € H;yq1 5 for Hipy = (Hiq11,...,Hit1,) and someg € {1,...,n}. We show that
for B’ there is a plan for reaching.

If B’ € H; ; then by the induction hypothesis a plan exists.

OtherwiseB’ C preimg,(B) and we can use the plan fpreimg,(B) that first applie® and
then continues with a plan associated with one of the belief statés in O

It would be easy to define an algorithm that systematically generates all belief states (plans)
breadth-first and therefore plans with optimal execution lengths, but this algorithm would in prac-
tice be much slower and plans would be bigger.

Above we have used only one partition of the state space to observational classes. However, it
is straightforward to generalize the above definitions and algorithms to the case in which several
partitions are used, each for a different set of actions. This means that the possible observations
depend on the action that has last been taken.

4.8 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.8.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.53 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.59 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are botandd states

2Restricting the proof of Theorem 4.53 Bstates with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.

104 CHAPTER 4. NONDETERMINISTIC PLANNING

TheV states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. Thél states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration withvastate will correspond to one nondeterministic
operator. That all successor configurations must be accepting (terminal or non-terminal) configu-
rations corresponds to requirement in planning that from all successor states of a state a goal state
must be reached.

Every transition from a configuration with state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.53 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let (X, @, 4, qo, g) be any alternating Turing machine with a polynomial space bogny
Let o be an input string of length.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q € Q for denoting the internal states of the TM,
2. s; for every symbok € X U {|,0} and tape cell € {0,...,p(n)}, and
3. h; for the positions of the R/W headc {0, ...,p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q

~q forallg € Q\{qo}.

siforall s € ¥ andi € {1,...,n} such thatth input symbol iss.

—s; forall s € ¥ andi € {1, ...,n} such thatth input symbol is not.
—s; foralls e Yandi € {0,n+ 1,n+2,...,p(n)}.

O;foralli e {n+1,...,p(n)}.

-0; foralli € {0,...,n}.

lo

© © N o 0 > W N

-, foralln € {1,...,p(n)}

=
o

. hy

=
=

. —h;foralli € {0,2,3,4,...,p(n) + 1}

4.8. COMPUTATIONAL COMPLEXITY 105

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is forvastate or art state3 For a given input symbol andvastate,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
and state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (XU{],0})xQ,i € {0,...,p(n)}and(s’,¢',m) € (XU{|}) xQx{L, N, R}
define the effect, , ;(s, ¢, m) asa A k A 6 where the effects, ~ andf are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= i’ then
a = T as nothing on the tape changes. Otherwise; —s; A s, to denote that the new symbol in
theith tape cell iss’ and nots.

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —q A ¢ if ¢ # ¢’ and T otherwise. We define = —~¢ wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

—h; ANhj—1 fm=1L
0= T ifm=N
=h; A Rt ifm=R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positigim) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesg(q) = 3 and for universal stateg g(q) = V differ. Let
(s.q) € (SU{1,0}) x Qi € {0,...,p(n)} andd(s, q) = {{s1, qr,m1)..... sk, ak. 1) }.

If g(¢) = 3, then defing: deterministic operators

0s,q,i,1 = <h1 A siNg, Ts,q,i(slv q1, m1)>
0s,qi,2 = (hi N 8i N q, T q,i(52, G2, m2))
Os,q,ik = (hi N 8i N Qs Toq,i (S Qs M)

That is, the plan determines which transition is chosen.
If g(q) =V, then define one nondeterministic operator

0s,qi = (hi Nsi Nq, (Ts,qi(51,q1,m1)]
Ts,q,i(SQa Q2,m2>\

Ts,q,i (S Qs M) -

That is, the transition is chosen nondeterministically.

No operators are needed for accepting or rejecting states.

106 CHAPTER 4. NONDETERMINISTIC PLANNING

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state variaple, ; becomes true and an
accepting state cannot be reached because no operator will be applicable.

Otherwise, we show inductively that from a computation tree of an accepting ATM we can
extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken

So, because all alternating Turing machines with a polynomial space bound can be in polyno-
mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. O

We can extend Theorem 4.53 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.

Theorem 4.54 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.53. If there.atate variables, an
acyclic plan exists if and only if a plan with execution length at n¥3stxists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exce&tdsThis counting can be done by having
n + 1 auxiliary state variablesy, ..., ¢, that are initialized to false. Every operat@f, e) is
extended tdp, e A t) wheret is an effect that increments the binary number encodedq by . , ¢,
by one until the most significant hif, becomes one. The go@lis replaced by A —¢,,.

Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing
machine accepts. O

Theorem 4.55 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.4.2 runs in exponential time in the size of the problem in-
stance. O

4.8. COMPUTATIONAL COMPLEXITY 107

4.8.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential
space Turing machines, the first problem is how to encode the tape of the TM. With polynomial
space, as in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and
conditional planning with full observability, it was possible to represent all the tape cells as the
state variables of the planning problem. With an exponential space bound this is not possible any
more, as we would need an exponential number of state variables, and the planning problem could
not be constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the tran-
sition the plan makes when the current tape cell is the watched tape cell is the one that assumes
the current symbol to be the one that is stored in the state variables. If it is not, the plan is not a
valid plan. Because the watched tape cell could be any of the exponential number of tape cells,
all the transitions the plan makes are guaranteed to correspond to the contents of the current tape
cell of the Turing machine, so if the plan does not simulate the Turing machine, the plan is not
guaranteed to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan cannot
cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.56 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.59. We do not¥atates and restrict

to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let (3, Q, 4, qo, g) be any deterministic Turing machine with an exponential space beund
Let ¢ be an input string of length. We denote théth symbol ofo by o;.

The Turing machine may use spade), and for encoding numbers frofnto e(n) + 1 corre-
sponding to the tape cells we need= [log,(e(n) + 2)| Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep

108 CHAPTER 4. NONDETERMINISTIC PLANNING

track of only one tape cell (which we will call th@atched tape céllthat is randomly chosen in
the beginning of every execution of the plan.
The setA of state variables in the problem instance consists of

1. g € Q for denoting the internal states of the TM,

2. w; fori € {0,...,m — 1} for the watched tape celle {0,...,e(n)},

3. sfor every symbok € ¥ U {|,0} for the contents of the watched tape cell,

4. h;fori € {0,...,m — 1} for the position of the R/W heade {0,...,e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. qo0

2. g forallg € Q\{qo}-

3. Formulae for having the contents of the watched tape cell in state varighle, (1}

= (w=0)
O« (w>n)
s vie{L,_.,n}m:S(w =) forallse X

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableand the values of the state
variabless € ¥ are determined on the basis of the valueswaf The expressions = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
wop, wi, - . .. Later we will also use effects := h + 1 andh := h — 1 that represent incrementing
and decrementing the number encodedipyh,

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (XU{],0}) x Q and(s’,¢',m) € (XU{|}) x Q@ x {L, N, R} define the effect
Ts,q(5',¢',m) asa A k A 6 where the effects, x andd are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= i’ then
a = T as nothing on the tape changes. Otherwise; ((h = w) > (—s A §')) to denote that the
new symbol in the watched tape cellsisand nots.

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —q A ¢ if ¢ # ¢’ and T otherwise. If R/W head movement is to the right we
definex = =g A ((h < e(n)) > ¢') if ¢ # ¢ and(h = e(n)) > —q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

4.8. COMPUTATIONAL COMPLEXITY 109

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

hi=h—-1ifm=1L
0 = T ifm=N
h:=h+1 ifm=R

By definition of TMs, movement at the left end of the tape is always to the right.

Now, these effects; ,(s, ¢’, m) which represent possible transitions are used in the operators
that simulate the DTM. Lets, ¢) € (XU {],00}) x Q andd(s, q) = {(s',¢',m)}.

If g(q) = 3, then define the operator

0sqg = (M # W)V $) N, Taq(s', q',m))

It is easy to verify that the planning problem simulates the DTM assuming that when operator
0s,4 IS €xecuted the current tape symbol is indee8o assume that someg, is the first operator
that misrepresents the tape contents and/thatc for some tape cell location Now there is an
execution of the plan so that = c. On this execution the preconditien, is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. O

Theorem 4.57 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.60 but works at the level of belief states. [

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.

4.8.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.55, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.

110 CHAPTER 4. NONDETERMINISTIC PLANNING

Theorem 4.58 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.53 and of
the EXPSPACE-hardness proof of Theorem 4.56. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.59 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let (X, Q, 4, qo,g) be any alternating Turing machine with an exponential space bound
e(z). Leto be an input string of length. We denote théth symbol ofo by o;.

The Turing machine may use spade), and for encoding numbers froérto e(n) + 1 corre-
sponding to the tape cells we need= [log,(e(n) + 2)| Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call theatched tape céllthat is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. ¢ € @ for denoting the internal states of the TM,
2. w; fori € {0,...,m — 1} for the watched tape celle {0,...,e(n)},
3. s for every symbok € ¥ U {|,J} for the contents of the watched tape cell,

4. s* for everys € ¥ U {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. h; fori € {0,...,m — 1} for the position of the R/W heade {0,...,e(n) + 1}.

The observable state variables @&reV andR, g € @, ands* for s € . These are needed by
the plan to decide how to proceed execution after a nondeterministic transition Wétate.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. —¢gforallg € Q\{qo}-

3. —s*forall s € X U {|}.

4.8. COMPUTATIONAL COMPLEXITY 111

4. Formulae for having the contents of the watched tape cell in state varighles, [1}.

| < (w=0)
O« (w>n)
$ < Vieq1,..n}oms(w =) forall s € &

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableand the values of the state
variabless € ¥ are determined on the basis of the valueswaf The expressions = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
wop, wi, Later we will also use effects := h + 1 andh := h — 1 that represent incrementing
and decrementing the number encodedipyh,

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is forvastate or ard state. For a given input symbol and state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
and state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.

Forall(s,q) € (XU{],0}) x Q and(s’,¢',m) € (XU{|}) x @ x {L, N, R} define the effect
7s.4(8', ¢, m) asa A k A 0 where the effects, x andd are defined as follows.

The effecta describes what happens to the tape symbol under the R/W head= i’ then
a = T as nothing on the tape changes. Otherwise; ((h = w) > (-s A s')) A ™ A —s* 10
denote that the new symbol in the watched tape call@d nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.

The effectx describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —q A ¢ if ¢ # ¢’ and T otherwise. If R/W head movement is to the right we
definex = =g A ((h < e(n)) > ¢) if ¢ # ¢’ and(h = e(n)) > —q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

(h:==h—1)ANLA-NA-R ifm=1L
0= NA-LA-R ifm=N
(h:=h+1)ANRA-LA-N ifm=R
By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effects; ,(s, ¢’, m) which represent possible transitions are used in the opera-

tors that simulate the ATM. Operators for existential stategq) = 3 and for universal states

q,9(q) = V differ. Let (s, q) € (XU {|,0}) x Q@ andd(s,q) = {(s1,q1,m1), ..., {Sk, gk, mk) }.
If g(q) = 3, then define: deterministic operators

05,41 = (((h #w) V 8) A\ q,Ts4(51,q1,m1))
05,42 = (((h # w) V 8) A q,Ts ¢(52, g2, m2))

Ong = (R #) V) A @, Tag (55, G 28))

112 CHAPTER 4. NONDETERMINISTIC PLANNING

That is, the plan determines which transition is chosen.
If g(¢) =V, then define one nondeterministic operator

05, = (((h # w) V s) Nq, (Ts4(51,q1,m1)|
Ts,q(327q27m2)|

Ts,q(skn dk, mk)>)

That is, the transition is chosen nondeterministically.

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound. If the Turing machine violates the space bound; ther{n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of planenfigurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of theonfiguration. The successorswhlndd configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A
plan with DAG form can be turned into a tree by having several copies of the shared subplans.
Branches not directly following the nondeterministic operator causing the uncertainty can be
moved earlier so that every nondeterministic operator is directly followed by a branch that chooses
a successor node for every possible new state, written symbol and last tape movement. With these
transformations there is an exact match between plans and computation trees of the ATM, and
mapping from plans to ATMs is straightforward like in the opposite direction.

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. d

What remains to be done is the extension of the above theorem to the case with arbitrary
(possibly cyclic) plans. For the fully observable case counting the execution length does not
pose a problem because we only have to count an exponential number of execution steps, which
can be represented by a polynomial number of state variables, but in the partially observable
case we need to count a doubly exponential number of execution steps, as the number of belief
states to be visited may be doubly exponential. A binary representation of these numbers requires
an exponential number of bits, and we cannot use an exponential number of state variables for
the purpose, because the reduction to planning would not be polynomial time. However, partial
observability together with only a polynomial number of auxiliary state variables can be used to
force the plans to count doubly exponentially far.

Theorem 4.60 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof. We extend the proof of Theorem 4.59 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.

4.8. COMPUTATIONAL COMPLEXITY 113

Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.56 and 4.53.

For a problem instance with state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have lehgtrRepresenting numbers
from 0t022" — 1 require2” binary digits. We introduce + 1 new unobservable state variables
do, ..., dy, for representing the index of one of the digits andfor the value of that digit, and
new state variableg, . . ., ¢, through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of thg" digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variables, ..., c¢,. The unobservable state variablgs. . ., d,, vq store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we callthe watched digjtand they are used for checking that the reportingyof. ., ¢, by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can ex2éedFor this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.59 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjundt to signify that the watched digit
is initially O (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesdy, . . . , d,, may have any values which means that the watched digit is chosen randomly.
The state variableg,, dy, . . ., d,, are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flag that is initially set to false by having f in the initial states formula.

The goal is extended byf A ((do A - - - Ad,) — —d,) to prevent executions that lead to setting
£ true or that have lengtt?" "' ~* or more. The conjundidy A - - - Ad,,) — —d, is false if the index
of the watched digit i€"*! — 1 and the digit is true, indicating an execution of lengtt22" "' 1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

(T,¢;) forallie{0,...,n}
(T,—c¢;) foralli € {0,...,n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every opéfatgrdefined in the proof
of Theorem 4.59 is replaced Wy, e At) where the testis the conjunction of the following effects.

((e=d)Ndy) > f
(c=d) > d,

(c>d)A~dy) > f
(¢>d) > —d,

114 CHAPTER 4. NONDETERMINISTIC PLANNING

Herec = d denotegcy < dy) A --- A (¢, < dy,) andc > d encodes the greater-than test for the
binary numbers encoded by, . . ., ¢, anddy, . .., d,.
The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the vadlyest,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, ch&ngel.

3. When the plan claims that a more significant digit changes from 0 to 1 and the valye of
is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the valye of
to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
271 _ 1 will be set if the count reached™ "' 1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indéxchanges from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the dithtit changes, and
this is the first time on that execution that the plan lies (hence the valdgisfthe true value of
the watched digit.)

If 5 > 4, theni could be the watched digit (and henee> d), and forj to change from O
to 1 the less significant bit should be 1, but we would know that it is not becadsds false.
Consequently on this plan execution the failure ffagould be set.

If j < 4, thenj could be the watched digit (and hence= d), and the value ofl, would
indicate that the current value of digiis 1, not 0. Consequently on this plan execution the failure
flag f would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot extded!. O

4.8.4 Polynomial size plans

We showed in Section 3.7 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.61 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is i¥.

Proof: Let p(n) be any polynomial. We give an N algorithm (Turing machine) that solves the
problem. Let the problem instan¢d, 7, O, G, () have sizen.

First guess a sequence of operaiors og, o1, . .., o0x for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thatis a solution. The oracle is a nondeterministic
polynomial-time Turing machine that accepts if a plan execution does not lead to a goal state

4.8. COMPUTATIONAL COMPLEXITY 115

or if the plan is not executable (operator precondition not satisfied). The oracle guesses an ini-
tial state and for each nondeterministic operator for each step which nondeterministic choices are
made, and then in polynomial time tests whether the execution of the operator sequence leads to a
goal state.

1. Guess valuatiod’ that satisfied.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everypie1| - - - |pnen by @ nondeterministically selectegl

3. Computes; = app,; (app,;_, (- - - app, (@pp, (I')))) for j = 0,5 =1, = 2,...,j = k.
4. If sj B~ ¢ foroj = (c¢j, e;), accept.
5. If s = G, accept.

6. Otherwise reject.

Theorem 4.62 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans ¥5-hard.

Proof: Truth of QBF of the formdz; - - - z,,Vy1 - - - ym ¢ is Lh-complete. We reduce this problem
to the plan existence problem of unobservable planning with polynomial length plans.

o A: {xla"'7xnay17"'7ymvsvg}

o [=—21 A ANy AgAs

e O =1{(s,z1),(s,m2),...,(s,2n),(s,7s A (d>g))}

e G=g

Out claim is that there is a plan if and onlydk; - - - ,,Vy1 - - - ym ¢ iS true.

Assume the QBF is true, that is, there is a valuatidor x, . .., z, so thatr,y = ¢ for any
valuationy of y1,...,ym. Let X = {(s,z;)|i € {1,...,n},z(x;) = 1}. Now the operators{
in any order followed by(s, =s A (¢ > g)) is a plan: whatever values, . .., y,, have,¢ is true
after executing the operatoss, and hence the last operator makés- g true.

Assume there is a plan. The plan has one occurren¢e efs A (¢ > g)) and it must be the
last operator. Define the valuatianof =1, ..., z, as follows. Letx(x;) = 1iff (s,z;) is one of
the operators in the plan, for allke {1,...,n}. Becausegy is reachedz, y = ¢ for any valuation
y of y1,...,ym, and the QBF is therefore true. O

116 CHAPTER 4. NONDETERMINISTIC PLANNING

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent
full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observabilityy PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent
full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observabilityy PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

4.8.5 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choicel), and the first column without nondeterminism (chdicand without conditional effects

(>>). These results are not given in this lecture.

4.9 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers
[1987 proposediniversal planss a solution to the high complexity of planning. GinsHdrggd
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg’s argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planiiEgioniet al, 1992; Peot and Smith, 1992; Pryor and

4.9. LITERATURE 117

Collins, 1996. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variant of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.4.1 was first presented by Cimatti €2fl03. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.4 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingveak planghat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chapter 3.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment to at least some extent. However,
there are problems (outside Al) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al, 1994. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lec{iRatanen, 2004a

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable cd&ertoli et al., 2001.

The computational complexity of conditional planning was first investigated by Litfr@@i4
and Haslum and Jonss@200d. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gantg, [Stockmeyer and Chandra, 197%hd from the universality prob-
lem of regular expressions with exponentiat[¢ptopcroft and Ullman, 1979 In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.

Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with information on the prob-
abilities of nondeterministic events.

Probabilites are important in quantifying the costs and success probabilities of plans when the
actions are nondeterministic. In many applications it is not sufficient just to have a plan. Itis
important to have a plan that is efficient in the sense that the cost of the actions does not outweigh
the benefits of reaching the goals. On some other problems there are no plans that are guaranteed
to reach the goals. In these cases it is important to maximize the probability of reaching the goals,
and hence it is vitally important to use information on the probabilities of different effects of
operators.

Probabilities complicate planning, both conceptually and computationally. Whereas in the
non-probabilistic of conditional planning with partial observability it is sufficient to work in a
finite discrete belief space, probabilities make the belief space continuous and thereby infinite.

In this section a number of algorithms for probabilistic planning are presented. In Sections 5.1
and 5.2 we present the transition system model with probabilities that extend the definitions given
in Sections 2.1 and 2.3 for non-succinct and succinct transition systems, respectively. Like in
Chapter 4 we start from planning with full observability in Section 5.3. Many probabilistic plan-
ning problems with full observability are closely related to Markov decision procéBsésrman,

1994.

5.1 Probabilistic transition systems

In many types of probabilistic planning problems considered in the literature the objective is not to
reach one of a set of designated goal states. Instead, the objective is to act in a way that maximizes
therewardsor minimizes thecosts Planning problems with a designated set of goal states can be
expressed in terms of rewards, but not vice versa.

Definition 5.1 A probabilistic transition systeis a 5-tuplell = (S, I, O, G, P) where
1. Sis afinite set of states,
2. I is a probability distribution overs,
3. O is a finite set of actions that are partial functions that map each state to a probability

distribution oversS,

118

5.2. SUCCINCT PROBABILISTIC TRANSITION SYSTEMS 119

4. G C Sis the set of goal states, and

5. P =(Cy,...,C,) is a partition of S to classes of observationally indistinguishable states
satisfying {C1,...,Cn} = SandC; N C; = D forall ¢, j suchthatl <i < j <n.

An actiono is applicablein states for whicho(s) is defined. These states we denote by
preqo) = {s € S|o(s) is defined}. Below, we will denote the set of actions applicable in a state
s € S by O(S). We also require thad(s) is non-empty for everg € S.

A maijor difference to the definition of Markov decision procesd@sterman, 1994is that
o € O are partial functions. This means that an action does not associate every state with a
probability distribution because an action is not necessarily applicable in all states.

Instead of using a designated set of goal states and have reaching a goal state or staying in
the goal states as an objective, in many types of planning problems the objective is to maximize
rewards or minimize costs. To formalize this we use instead of a set of goal states a cost function
that associates every action and state a numerical cost.

Definition 5.2 A probabilistic transition system with rewargsa 5-tuplell = (S,1,0,C, P)
where the components I, O and P are as in Definition 5.1 and’ : O x S — R is a function
from actions and states to real numbers, indicating ¢thstassociated with an action in a given
state.

5.2 Succinct probabilistic transition systems

Probabilistic transition system can be represented exponentially more succinctly in terms of state
variables and operators.

Definition 5.3 Let A be a set of state variables. Aperatoiis a pair (c, ¢) wherec is a proposi-
tional formula overA (the preconditior), ande is aneffectover A. Effects overd are recursively
defined as follows.

1. a and—q for state variables: € A are effects oveH.

2. e1N---Neyisaneffectover if ey, ..., e, are effects oved (the special case with = 0
is the empty effect.)

3. ¢ > eis an effect oved if cis a formula overd ande is an effect over.

4. pie1|- - |pnen is an effect oved if n > 2 andey,..., e, for n > 2 are effects oved
andpy,...,p, are real numbers such that; + --- +p, = 1 and0 < p; < 1 for all
ie{l,...,n}.

Operators map states to probability distributions over their successor states.

Definition 5.4 (Operator application) Let (c,e) be an operator overd. Let s be a state (a
valuation of A). The operator isapplicable ins if s = ¢ and for every setl € [e]s the set
U{M|(p, M) € E,p > 0} is consistent.

Recursively assign each effech set[e|s of pairs (p, M) wherep is a probability0 < p <1
and M is a set of literalsz and—a wherea € A.

120 CHAPTER 5. PROBABILISTIC PLANNING

1. [a]s = {(1, {a})} and[~a], = {(1, {-a})} fora € A.

2. [er A Aepls = {<H?:1piv U?:l M;)|(p1, M) € [e1]s, ., (Pn, Mn) € [en]s}
3. [>e]s =le]sif s £ and[d > e]s = {(1,0)} otherwise.

4. [prer] - [prenls = {(p1 - p, e)[(p,) € [e1]s} U+ U {{pn - p, €)|(p, €) € [en]s}

For handling effects lik€0.2a|0.8b) A (0.2a|0.8b), which produces sefs:}, {a, b}, {a, b}, {b}
respectively with probabilitie8.04, 0.16, 0.16 and0.64, the sets in this definition are understood
as multisets so that the probability 0.164af, b} is counted twice. Alternatively, in (4) the union
of sets is defined so that for exampl@.2, {a})} U {(0.2,{a})} = {(0.4,{a})}: same sets of
changes are combined by summing their probabilities.

The successor states ©tinder the operator are ones that are obtained frety making the
literals in M for (p, M) € [e]s true and retaining the truth-values of state variables not occurring
in M. The probability of a successor state is the sum of the probabifities (p, M) € [e]s that
lead to it.

Definition 5.5 A succinct probabilistic transition systama 5-tuplell = (A, I, O, G, V') where
1. Ais afinite set of state variables,

2. I which describes a probability distribution over the possible initial states is a set of pairs
(p,) wherep is a number such thal < p < 1 and ¢ is a formula overA such that

(ZséS,s':qSl pl) + o+ (Zses,s}:(ﬁn pn) = 1 wherel = {<p17 ¢1>7 ceey <pn7 ¢n>}!

3. O is afinite set of operators ovet,
4. G is a formula overA describing the goal states, and

5. V C A s the set of observable state variables.

Definition 5.6 A succinct probabilistic transition system with rewaisla 5-tuplell = (A, I,0,C,V)
where the component$, I, O and V" are as in Definition 5.5 and is a function from operators
to pairs (¢, r) where¢ is a formula overAd andr is a real number indicating theostassociated
with an action in a given state: cost of operatorc O in states is r if there is(¢,r) € C(o)
such thats = ¢. For this to be well defined there may be f@;, 1), (¢2,72) } € C(0) such that

o1 N ¢9 is satisfiable.

We can associate a probabilistic transition system with every succinct probabilistic transition
system.

5.3 Problem definition

A given plan produces infinite sequences of rewafrdss, Clearly, if the planning problem

has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.

5.4. ALGORITHMS FOR FINDING FINITE HORIZON PLANS 121

1. Expected total rewards over a finite horizon.

This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is for many applications that involve very long actions sequences the most natural way
of assessing plans. However, there are several technical complications that make average
rewards difficult to use.

3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying théth reward by\i~! and it means that early rewards are
much more important than rewards obtained much later. The discount conshest a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constant

is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions. For finite horizon problems the optimal actions in a given state at different
time points may be different. The optimal plans are therefore time-dependent.

5.4 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthV. We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum values;(s) that can be obtained in statec S at time pointi € {1,...,N}
fulfill the following equations.

vy(s) = max R(s,a)

a€O(s)
vi(s) = mg(x) (R(s,a) + Zp(s/\s,a)viﬂ(s')) ,forie{1,...,N -1}
acO(s
s’'eS

The value at the last stage is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.
These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computey, thenvy_1, vy_2 and so on, untib; is obtained. The action to be taken

in states € S at time point; is 7(s, 7) defined by

N) = R(s,
(s, N) argaréloa();) (s,a)

7(s,i) = arg moa(x) (R(s,a) + E p(8'|s,a)vi+1(s')> ,forie{l,...,N -1}
acO(s
s'es

122 CHAPTER 5. PROBABILISTIC PLANNING

5.5 Algorithms for finding plans under discounted rewards

The valuev(s) of a states € S'is the discounted sum of the expected rewards that can be obtained
by choosing the best possible actionsirand assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for eacghestate
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constant

v(s) = max (R(s,a) + Z)\p(s’|s,a)v(s')> (5.1)

a€0(s) ses

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.5.1 Evaluating the value of a given plan

Given a planr its value under discounted rewards with discount constaattisfies the following
equation for every € S.

v(s) = R(s,m(s)) + Y _ Ap(s'|s, m(s))v(s") (5.2)

s'eS

This yields a system of linear equation wj$] equations and unknowns. The solution of these
equations yields the value of the plan in each state.

5.5.2 Value iteration

The value iteration algorithm finds an approximation of the value of the opfirdédcounted plan
within a constant, and a plan with at least this value.

1.n:=0
2. Assign (arbitrary) initial values to°(s) for all s € S.

3. For eachs € S, assign

v"(s) := max <R(s,a) + Z)\p(s'|s,a)v”(s')>

a€O(s) Jes

If [0+ (s) —v™(s)| < 6(12;” for all s € S then go to step 4.
Otherwise, set := n + 1 and go to step 3.

4. Assign
m(s) ;= arg max (R(s, a) + Z Ap(s’|s,a)v”+1(s')>

a€O(s) Jes

5.5. ALGORITHMS FOR FINDING PLANS UNDER DISCOUNTED REWARDS 123

Figure 5.1: A stochastic transition system

Theorem 5.7 Let v, be the value function of the plan produced by the value iteration algorithm,
and letv* be the value function of an optimal plan. Thef(s) — v.(s)| < eforall s € S.

Note that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value forsstate; and the
optimal value for state, is ro, then there is one plan that achieves these both.

Example 5.8 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in state B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. [

5.5.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy itetatibis slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1. Assignn := 0.
. Let 70 be any mapping from states to actions.
. Compute the values’(s) of all s € S underr™.

2
3
4. Letn" 1 (s) = argmax,co(s) (R(s,a) + Y ycg Ap(s']s,a)v"(s")).
5. Assighn :=n + 1.

6

.lfn=1o0rv™ #v" ! thengoto 3.

Theorem 5.9 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. O

In connection with Markov decision processes the waolicy is typically used instead of the wopdan.

124 CHAPTER 5. PROBABILISTIC PLANNING

It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteratior{ Puterman, 1994 that is, the number of iterations needed for finding:-aptimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.5.4 Implementation of the algorithms with ADDs

Similarly to the techniques in Section 4.2 that allow representing state sets and transition relations
as formulae or binary decision diagrams, also probabilistic planning algorithms can be imple-
mented with data structures that allow the compact representation of probability distributions.

A main difference to the non-probabilistic case (Sections 4.4.1 and 4.4.2) is that for probabilis-
tic planning propositional formulae and binary decision diagrams are not suitable for representing
the probabilities of nondeterministic operators nor the probabilities of the value functions needed
in the value and policy iteration algorithm&lgebraic decision diagram&DDs are a generaliza-
tion of BDDs can represent probability distributions. (Section 2.2.3).

In Section 4.1.2 we gave a translation from nondeterministic operators to propositional formu-
lae. The definition of nondeterministic operators and the translation does not use probabilities.

Next we define a similar translation from nondeterministic operators to ADDs that represents
the probabilities. The translation is based on a funct@?i“(e) that translates an effeetwith that
possibly affects state variablesihto an ADD.

72(¢) = 75(e) whene is deterministic
b b b
Tgo (bPl€1| o |pnen) = m 'g'gro (e1) + - —|—pnb' TE’C’ (en))
ro ro o o
TE (et A Ney) = T]g\(BQU...UBn)(GO) 22 (e2) ...~ ngn (en)

whereB; = changege;) foralli € {1,...,n}

The first part of the translatio@mb(e) for deterministice is the translation of deterministic effects
we presented in Section 3.6.2, but restricted to state variablBs he result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.

The translation of an effeetin normal form into an ADD s °®(¢) where A is the set of all
state variables. Translating an operatot (c, e) to an ADD representing its incidence matrix is

asT, = ¢ - 77°°(e), wherec is the ADD representing the precondition.

Example 5.10 Consider effect0.2-A4]0.84) A (0.5(b > —b)|0.5T). The two conjunct translated
to functions

Note that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Note that the third column, with the two functions componentwise

5.5. ALGORITHMS FOR FINDING PLANS UNDER DISCOUNTED REWARDS 125

multiplied, has the property that the sum of successor states of each state is 1.0.

aba't! Ja Jo Ja - Jo
0000(0.2 1.0 0.2
0001{0.2 0.0 0.0
0010/0.8 1.0 0.8
0011{0.8 0.0 0.0
0100(0.2 0.5 0.1
010110.2 0.5 0.1
0110{0.8 0.5 0.4
0111{0.8 0.5 04
1000(0.2 1.0 0.2
1001{0.2 0.0 0.0
1010j0.8 1.0 0.8
1011{0.8 0.0 0.0
1100{0.2 0.5 0.1
1101{0.2 0.5 0.1
1110(0.8 0.5 0.4
1111{0.8 0.5 0.4

We represent the rewards produced by operater (c,e) € O in different states compactly
as alistR(o) = {{¢1,71), ..., {¢n,rn)} Of pairs(¢, r), meaning that when is applied in a state
satisfying¢ the rewardr is obtained. In any state only one of the formulganay be true, that
is ¢; = —¢; forall {4,5} € {1,...,n} suchthat # j. If none of the formula is true in a given
state, then the reward is zero. Heriggis simply a mapping from states to a real numbers.

The reward functions?(o) can be easily translated to ADDs. First construct the BDDs for
o1, ..., ¢, and then multiply them with the respective rewards as

Ro=r1-¢p1+-- 41y ¢p —00: e

The summandw - —¢ handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.
Similarly, the probability distribution on possible initial states can be representdd-as
{{(¢1,p1),- -+, {¢dn,pn)} and translated to an ADD.
Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letv™ be an ADD that is constant 0.

2.

"= o (Ro+A-3A' (T, - (v"[A'/A])) foreverys € S
c,e)=o0€

If all terminal nodes of ADDjv" ! — v"| are< 5(12;” then stop.

Otherwise, set := n + 1 and repeat step 2.

126 CHAPTER 5. PROBABILISTIC PLANNING

5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994, and our presentation of the algorithms in Section 5.5 (5.5.2 and 5.5.3) follows that
of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear
programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al.[1999 and is shown to be capable of solving problems that could not be efficiently
solved by conventional implementations of value iteration.

The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 19¥8&ndik, 1978; Smallwood and Sondik,

1979 and even today most of the work on POMDPs is based on those algorikmetbling

et al, 1999. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidablé¢Madaniet al, 2003. The complexity of probabilistic planning has been investigated
for example by Mundhenk et d)200d and Littman[1997.

Bonet and Geffnef200d and Hansen and Zilberstef@001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1 Prove that on each step of policy iteration the policy improves.

Bibliography

[Allen et al, 1997 J. Allen, J. A. Hendler, and A. Tate, editorReadings in PlanningMorgan
Kaufmann Publishers, 1990.

[Alur etal, 1997 R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state space explorationCdmputer Aided Verification,
9th International Conference, CAV '97, Haifa, Israel, June 22-25, 1997, Proceedialysne
1254 ofLecture Notes in Computer Scienpages 340-351. Springer-Verlag, 1997.

[Andersoret al, 1999 C. Anderson, D. Smith, and D. Weld. Conditional effects in Graphplan.
In R. Simmons, M. Veloso, and S. Smith, editoBpceedings of the Fourth International
Conference on Atrtificial Intelligence Planning Systepeges 44-53. AAAI Press, 1998.

[Bacchus and Kabanza, 2J0B. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planningrtificial Intelligence 116(1-2):123-191, 2000.

[Backstbm and Nebel, 1995C. Backstom and B. Nebel. Complexity results for SA$lan-
ning. Computational Intelligencel1(4):625—-655, 1995.

[Baharet al, 1997 R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenazi. Algebraic decision diagrams and their applicatinsal Methods in System
Design: An International Journall0(2/3):171-206, 1997.

[Balcazaret al,, 1989 J. L. Bal@zar, J. Daz, and J. Gabar Structural Complexity.l Springer-
Verlag, Berlin, 1988.

[Balcazaret al,, 1990 J. L. Bald@zar, J. Daz, and J. Gabair Structural Complexity I Springer-
Verlag, Berlin, 1990.

[Bertoli et al, 2001 P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeter-
ministic domains under partial observability via symbolic model checking. In B. Nebel, editor,
Proceedings of the 17th International Joint Conference on Artificial Intelligepages 473—
478. Morgan Kaufmann Publishers, 2001.

[Biereet al, 1999 A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In W. R. Cleaveland, editofpols and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Conference, TACASIO®e 1579 of
Lecture Notes in Computer Scienpages 193—-207. Springer-Verlag, 1999.

[Blum and Furst, 1997A. L. Blum and M. L. Furst. Fast planning through planning graph anal-
ysis. Artificial Intelligence 90(1-2):281-300, 1997.

127

128 BIBLIOGRAPHY

[Bonet and Geffner, 2000B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems
pages 52-61. AAAI Press, 2000.

[Bonet and Geffner, 2001B. Bonet and H. Geffner. Planning as heuristic seafgtificial Intel-
ligence 129(1-2):5-33, 2001.

[Brooks, 1991 R. A. Brooks. Intelligence without representatidutificial Intelligence 47:139—
159, 1991.

[Bryant, 1992 R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision dia-
grams.ACM Computing Survey24(3):293—-318, September 1992.

[Burchetal, 1994 J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verificatidBEE Transactions on Computer-
Aided Design of Integrated Circuits and Systetr®(4):401-424, 1994.

[Bylander, 1994 T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2):165-204, 1994.

[Bylander, 1996 T. Bylander. A probabilistic analysis of propositional STRIPS planniudifi-
cial Intelligence 81(1-2):241-271, 1996.

[Chandrzet al, 1981 A. Chandra, D. Kozen, and L. Stockmeyer. Alternatiatournal of the
ACM, 28(1):114-133, 1981.

[Cimattiet al, 2009 A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checkingrtificial Intelligence 147(1-2):35-84, 2003.

[Clarkeet al,, 1994 E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. Technical Report CS-94-204,
Carnegie Mellon University, School of Computer Science, October 1994.

[Darwiche, 2001 A. Darwiche. Decomposable negation normal forrdournal of the ACM
48(4):1-42, 2001.

[de Bakker and de Roever, 1972. W. de Bakker and W. P. de Roever. A calculus of recursive
program schemes. IRroceedings of the First International Colloquium on Automata, Lan-
guages and Programmingages 167-196. North-Holland, 1972.

[Dijkstra, 1976 E. W. Dijkstra. A Discipline of ProgrammingPrentice Hall, Englewood Cliffs,
New Jersey, 1976.

[Emerson and Sistla, 19P@&. A. Emerson and A. P. Sistla. Symmetry and model-checkg.
mal Methods in System Design: An International Jour8é1/2):105-131, 1996.

[Ernstet al, 1969 G. Ernst, A. Newell, and H. SimonGPS: A Case Study in Generality and
Problem SolvingAcademic Press, 1969.

BIBLIOGRAPHY 129

[Ernstet al, 19971 M. Ernst, T. Millstein, and D. S. Weld. Automatic SAT-compilation of plan-
ning problems. In M. Pollack, editoRroceedings of the 15th International Joint Conference
on Artificial Intelligence pages 1169-1176. Morgan Kaufmann Publishers, 1997.

[Erolet al, 1999 K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent plannifgificial Intelligence 76(1-2):75-88,
1995.

[Etzioniet al, 1994 O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An
approach to planning with incomplete information. In B. Nebel, C. Rich, and W. Swartout,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR '92pages 115-125. Morgan Kaufmann Publishers, October
1992.

[Fikes and Nilsson, 1971R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the applica-
tion of theorem proving to problem solvindtificial Intelligence 2(2-3):189-208, 1971.

[Fujitaet al, 1997 M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representatieormal Methods in System
Design: An International Journall0(2/3):149-169, 1997.

[Gerevini and Schubert, 19p&\. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. Rroceedings of the 15th National Conference on Atrtificial
Intelligence (AAAI-98) and the 10th Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-98) pages 905-912. AAAI Press, 1998.

[Ginsberg and Smith, 1988\. L. Ginsberg and D. E. Smith. Reasoning about action I: A possi-
ble worlds approachArtificial Intelligence 35(2):165-195, 1988.

[Ginsberg, 198P M. L. Ginsberg. Universal planning: An (almost) universally bad idslaMag-
azine 10(4):40-44, 1989.

[Godefroid, 1991 P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editorProceedings of the 2nd International Conference on Computer-Aided
Verification (CAV '90), Rutgers, New Jersey, 1980mber 531 in Lecture Notes in Computer
Science, pages 176-185. Springer-Verlag, 1991.

[Green, 196p C. Green. Application of theorem-proving to problem solving. In D. E. Walker
and L. M. Norton, editorsProceedings of the 1st International Joint Conference on Artificial
Intelligence pages 219-239. William Kaufmann, 1969.

[Hansen and Zilberstein, 20DE. A. Hansen and S. Zilberstein. LAOA heuristic search algo-
rithm that finds solutions with loopgrtificial Intelligence 29(1-2):35-62, 2001.

[Hartet al, 1969 P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum-cost patH&EE Transactions on System Sciences and Cybernetics
SSC-4(2):100-107, 1968.

[Haslum and Geffner, 2000P. Haslum and H. Geffner. Admissible heuristics for optimal plan-
ning. In S. Chien, S. Kambhampati, and C. A. Knoblock, editem®ceedings of the Fifth

130 BIBLIOGRAPHY

International Conference on Artificial Intelligence Planning Systepagies 140-149. AAAI
Press, 2000.

[Haslum and Jonsson, 200@. Haslum and P. Jonsson. Some results on the complexity of plan-
ning with incomplete information. In S. Biundo and M. Fox, editdRecent Advances in Al
Planning. Fifth European Conference on Planning (ECP;98)mber 1809 in Lecture Notes in
Artificial Intelligence, pages 308—-318. Springer-Verlag, 2000.

[Hoeyet al, 1999 J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In K. B. Laskey and H. Prade, editémsertainty in Artificial Intel-
ligence, Proceedings of the Fifteenth Conference (UA|-P&yes 279—-288. Morgan Kaufmann
Publishers, 1999.

[Hoffmann and Nebel, 2001J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic searchournal of Artificial Intelligence Researchi4:253-302,
2001.

[Hopcroft and Ullman, 1979J. E. Hopcroft and J. D. Ullmarintroduction to Automata Theory,
Languages, and ComputatioAddison-Wesley Publishing Company, 1979.

[Ichikawa and Hiraishi, 1998A. Ichikawa and K. Hiraishi. Analysis and control of discrete-event
systems represented as Petri nets. In P. Varaiya and B. Kurzhanski, edismgte Event
Systems: Models and Applications, IIASA Conference, Sopron Hungary, August 3-7, 1987
number 103 in Lecture Notes in Control and Information Sciences, pages 115-134. Springer-
Verlag, 1988.

[Kaelblinget al, 1999 L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting
in partially observable stochastic domaidstificial Intelligence 101(1-2):99-134, 1998.

[Kautz and Selman, 1992H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann,
editor,Proceedings of the 10th European Conference on Artificial Intelliggpages 359—-363.
John Wiley & Sons, 1992.

[Kautz and Selman, 1996H. Kautz and B. Selman. Pushing the envelope: planning, proposi-
tional logic, and stochastic search. Pmoceedings of the 13th National Conference on Ar-
tificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference
pages 1194-1201. AAAI Press, August 1996.

[Kirkpatrick et al,, 1983 S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealingScience220(4598).671-680, May 1983.

[Knuth, 1998 D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching
Addison-Wesley Publishing Company, 1998.

[Korf, 1989 R. E. Korf. Depth-first iterative deepening: an optimal admissible tree seArth.
ficial Intelligence 27(1):97-109, 1985.

[Kupferman and Vardi, 19990. Kupferman and M. Y. Vardi. Church’s problem revisitethe
Bulletin of Symbolic Logigpages 245-263, 1999.

BIBLIOGRAPHY 131

[Li and Wonham, 19983 Y. Li and W. M. Wonham. Control of vector discrete-event system | - the
base modellEEE Transactions on Automatic Conty@8(8):1214-1227, 1993.

[Littman, 1997 M. L. Littman. Probabilistic propositional planning: Representations and com-
plexity. In Proceedings of the 14th National Conference on Atrtificial Intelligence (AAAI-97)
and 9th Innovative Applications of Artificial Intelligence Conference (IAAl-p&yes 748—-754,
Menlo Park, July 1997. AAAI Press.

[Lozano and Balazar, 1990 A. Lozano and J. L. Bakzar. The complexity of graph problems
for succinctly represented graphs. In M. Nagl, edi@raph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG'8amber 411 in Lecture Notes in Computer Sci-
ence, pages 277-286. Springer-Verlag, 1990.

[Madaniet al, 2003 O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization proble/dificial Intelligence 147(1-2):5-34,
2003.

[McAllester and Rosenblitt, 1991D. A. McAllester and D. Rosenblitt. Systematic nonlinear
planning. In T. L. Dean and K. McKeown, editoRroceedings of the 9th National Conference
on Artificial Intelligence volume 2, pages 634—-639. AAAI Press / The MIT Press, 1991.

[McDermott, 1999 D. V. McDermott. Using regression-match graphs to control search in plan-
ning. Artificial Intelligence 109(1-2):111-159, 1999.

[McMillan, 2003 K. L. McMillan. Interpolation and SAT-based model checking. In W. A.
Hunt Jr. and F. Somenzi, editoByoceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003humber 2725 in Lecture Notes in Computer Science,
pages 1-13, 2003.

[Meyer and Stockmeyer, 19V . R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential timerdoeedings of the 13th Annual
Symposium on Switching and Automata Thepages 125-129. IEEE Computer Society, 1972.

[Mneimneh and Sakallah, 20031. Mneimneh and K. Sakallah. Computing vertex eccentricity in
exponentially large graphs: QBF formulation and solution. In E. Giunchiglia and A. Tacchella,
editors,SAT 2003 - Theory and Applications of Satisfiability Testmgnber 2919 in Lecture
Notes in Computer Science, pages 411-425, 2003.

[Mundhenket al,, 200§ M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of
finite-horizon Markov decision process problerdsurnal of the ACM47(4):681—720, 2000.

[Muscettolaet al, 1999 N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote Agent:
to boldly go where no Al system has gone befoketificial Intelligence 103(1-2):5-47, 1998.

[Nguyenet al, 2003 X. Nguyen, S. Kambhampati, and R. S. Nigenda. Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP sedifatial Intelli-
gence 135:73-123, 2002.

[Papadimitriou and Yannakakis, 198€. H. Papadimitriou and M. Yannakakis. A note on suc-
cinct representations of graphaformation and Contrqgl71:181-185, 1986.

132 BIBLIOGRAPHY

[Papadimitriou, 1994 C. H. Papadimitriou.Computational Complexity Addison-Wesley Pub-
lishing Company, 1994.

[Pearl, 1984 J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Salving
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[Peot and Smith, 1992M. A. Peot and D. E. Smith. Conditional nonlinear planning. In
J. Hendler, editorProceedings of the First International Conference on Artificial Intelligence
Planning Systempages 189-197. Morgan Kaufmann Publishers, 1992.

[Pixleyet al, 1993 C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchro-
nization sequences based on binary decision diagram$?rdceedings of the 29th Design
Automation Confereng@ages 620-623, 1992.

[Pryor and Collins, 1996L. Pryor and G. Collins. Planning for contingencies: A decision-based
approachJournal of Artificial Intelligence Research:287-339, 1996.

[Puterman, 1994 M. L. Puterman.Markov decision processes: discrete stochastic dynamic pro-
gramming John Wiley & Sons, 1994.

[Ramadge and Wonham, 198P. Ramadge and W. Wonham. Supervisory control of a class of
discrete-event processeSIAM Journal of Control and Optimizatio@25(1):206—230, January
1987.

[Rintaneret al., 2005 J. Rintanen, K. Heljanko, and I. Niengel Planning as satisfiability: par-
allel plans and algorithms for plan search. Report 216, Albert-Ludwigs-Unigesigiburg,
Institut fur Informatik, 2005.

[Rintanen, 199B J. Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editdPsinciples of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KRp88gs 617—-624.
Morgan Kaufmann Publishers, June 1998.

[Rintanen, 2004aJ. Rintanen. Distance estimates for planning in the discrete belief space. In
Proceedings of the 19th National Conference on Atrtificial Intelligence (AAAI-2004) and the
16th Conference on Innovative Applications of Artificial Intelligence (IAAI-20pdyes 525—
530. AAAI Press, 2004.

[Rintanen, 2004b J. Rintanen. Phase transitions in classical planning: an experimental study. In
D. Dubais, C. A. Welty, and M.-A. Williams, editor®rinciples of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference (KR 2064@s 710-719.
AAAI Press, 2004.

[Rosenschein, 1981S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes,
editor, Proceedings of the 7th International Joint Conference on Artificial Intelligepeges
331-337. William Kaufmann, August 1981.

[Sacerdoti, 1974 E. D. Sacerdoti. Planning in a hierarchy of abstraction spagstficial Intel-
ligence 5:115-135, 1974.

BIBLIOGRAPHY 133

[Sacerdoti, 1976 E. D. Sacerdoti. The nonlinear nature of plans. Pimceedings of the 4th
International Joint Conference on Artificial Intelligenqeages 206-214, 1975.

[Sandewall, 1994aE. SandewallFeatures and Fluents. The Representation of Knowledge about
Dynamic Systemsvolume |. Oxford University Press, 1994.

[Sandewall, 1994bE. Sandewall. The range of applicability of nonmonotonic logics for the
inertia problem.Journal of Logic and Computatiod(5):581-615, 1994.

[Schoppers, 1997M. J. Schoppers. Universal plans for real-time robots in unpredictable envi-
ronments. In J. P. McDermott, editdtroceedings of the 10th International Joint Conference
on Artificial Intelligence pages 1039-1046. Morgan Kaufmann Publishers, 1987.

[Selmaret al, 1994 B. Selman, D. G. Mitchell, and H. Levesque. Generating hard satisfiability
problems.Atrtificial Intelligence 81(1-2):459-465, 1996.

[Shoham, 1988Y. Shoham. Chronological ignorance: Experiments in nonmonotonic temporal
reasoningArtificial Intelligence 36(3):279-331, 1988.

[Smallwood and Sondik, 197Y3R. D. Smallwood and E. J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizZOperations Resear¢i21:1071-1088,
1973.

[Sondik, 1978 E. J. Sondik. The optimal control of partially observable Markov processes over
the infinite horizon: discounted cos®perations Resear¢i26(2):282—304, 1978.

[Starke, 19911 P. H. Starke. Reachability analysis of Petri nets using symmetdesrnal of
Mathematical Modelling and Simulation in Systems Ana)\&i4/5):293—-303, 1991.

[Stein and Morgenstern, 19P4.. A. Stein and L. Morgenstern. Motivated action theory: a formal
theory of causal reasoningrtificial Intelligence 71:1-42, 1994.

[Stockmeyer and Chandra, 197B. J. Stockmeyer and A. K. Chandra. Provably difficult combi-
natorial gamesSIAM Journal on Computing(2):151-174, 1979.

[Valmari, 1991 A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg,
editor,Advances in Petri Nets 1990. 10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germangumber 483 in Lecture Notes in Computer Science, pages 491—
515. Springer-Verlag, 1991.

[Vardi and Stockmeyer, 19859\. Vardi and L. Stockmeyer. Improved upper and lower bounds
for modal logics of programs. IRroceedings of the 17th Annual ACM Symposium on Theory
of Computingpages 240-251. Association for Computing Machinery, 1985.

[Wonham, 198B W. M. Wonham. A control theory for discrete-event systems. In M. Denham
and A. Laub, editorsAdvanced Computing Concepts and Techniques in Control Engineering
pages 129-169. Springer-Verlag, 1988.

Index

appr(s), 55
PRy, ;...co, (5), 10, 20
app,(s), 10, 20
asatD, ¢), 40

[e]d", 19

e]s, 18, 119
Rs3(A,A,0,X), 90
R2(A, A’,0), 59
R1(A, A", 52
soMd(s), 79
5:"(¢), 36

ma
T

{‘r) ’
5/ (¢), 42,64
EPC¥(e,), 90
EPG(e), 28

preimg,(¢), 71
regr¢(¢), 66
regre(¢), 30
regrou...;on (¢)' 30
regr,(¢), 30
s[A’/A], 68
spreimg(¢), 71
2-EXP, 25, 110

Ax, 34

action, 8, 118
acyclic plan, 78
ADD, 16, 124

AEXPSPACE, 25, 110

affect, 58

alternating Turing machine, 25, 104, 110
application, 8, 119

APSPACE, 25, 104

arithmetic existential abstraction, 17
assignment, 11

backward distance (of a state), 79
BDD, 14

belief space, 74

belief state, 74

Bellman equation, 122

binary decision diagram, 14
bounded model-checking, 63

causal link planning, 6
clause, 13

CNF, 13

completeness, 26
complexity, 64

composition of operators, 32
conjunction, 11

conjunctive normal form, 13, 14
connective, 11

consistency, 12

cost, 118

deterministic operator, 19

deterministic succinct transition system, 20
deterministic transition system, 9
deterministic Turing machine, 25, 60, 107
discrete event systems, 5

disjunction, 11

disjunctive normal form, 13, 14

distance (of a state), 36, 79

DNF, 13

effect, 17, 119
existential abstraction, 16, 17, 69

INDEX

EXP, 25, 104
EXPSPACE, 25, 107

formula, 11
forward distance (of a state), 36

Graphplan, 6, 64

hardness, 25
hierarchical planning, 4
history-independent policy, 75

IDA %, 34
imageimg,(s), 8, 71
interference, 58
intractable, 26
invariant, 36, 46

linear programming, 126
literal, 13
logical consequence, 12

maintenance goal, 83
maintenance goals, 77
many-one reduction, 25
max heuristic, 38
memoryless plan, 75
model, 11
model-checking, 63
motion planning, 2

negation, 11

negation normal form, 13

NEXP, 25

NNF, 13

nondeterministic Turing machine, 25

normal form IlI, nondeterministic operators,
23

normal form, deterministic operators, 21

normal form, nondeterministic operators, 22

NP, 25, 62

observability, 74

observable state variable, 19, 120
operator, 17, 119

operator application, 8, 119
optimality equation, 122

P, 25

135

partial-order planning, 6, 35, 116
partial-order reduction, 64
partially-ordered plans, 57, 63
path planning, 2

phase transitions, 64
planning graphs, 6, 64

policy, 75

precondition, 17, 119
preimagepreimg,(s), 8
program synthesis, 5
progression, for formulae, 73
progression, for states, 28
propositional formula, 11
propositional variable, 11
PSPACE, 25, 60

QBF, 13, 89
qualification problem, 5
guantified Boolean formula, 13, 89, 115

ramification problem, 5
reachability, 36, 79
regression, 29, 66, 72
relaxed plan heuristic, 43
reward, 118

satisfiability, 12

scheduling, 2

sensing action, 74

sequential composition, 21, 34
Shannon expansion, 15

simulated annealing, 34

sorting networks, 87

state, 8,17, 118

state variable, 17

state variable, observable, 19, 120
step plan, 58

STRIPS, 5

STRIPS operators, 6, 20, 32
strong preimagepreimg(7'), 9, 71, 79
strongest invariant, 36

succinct representation, 26
succinct transition system, 18, 120
sum heuristic, 41

symmetry reduction, 64

task planning, 3

136 INDEX

tautology, 12

tractable, 26

transition system, 8, 9, 118-120
Turing machine, 25

universal abstraction, 69

valid, 12
valuation, 11

WA, 34
weak preimag@reimg,(s), 8, 71

