
Principles of AI Planning
9. Interlude: Finite-domain representation

Malte Helmert and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

June 22nd, 2010

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 1 / 19

Principles of AI Planning
June 22nd, 2010 — 9. Interlude: Finite-domain representation

9.1 Invariants

9.2 Planning tasks in finite-domain representation

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 2 / 19

Invariants

9.1 Invariants

Introduction
Computing invariants
Exploiting variants

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 3 / 19

Invariants Introduction

Invariants

I When we as humans reason about planning tasks, we implicitly make
use of “obvious” properties of these tasks.

I Example: we are never in two places at the same time

I We can express this as a logical formula ϕ that is
true in all reachable states.

I Example: ϕ = ¬(at-uni ∧ at-home)

I Such formulae are called invariants of the task.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 4 / 19

Invariants Computing invariants

Computing invariants

How does an automated planner come up with invariants?

I Theoretically, testing if an arbitrary formula ϕ
is an invariant is as hard as planning itself.

I Still, many practical invariant synthesis algorithms exist.

I To remain efficient (= polynomial-time), these algorithms only
compute a subset of all useful invariants.

I Empirically, they tend to at least find the “obvious” invariants of a
planning task.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 5 / 19

Invariants Computing invariants

Invariant synthesis algorithms

Most algorithms for generating invariants are based on a
generate-test-repair paradigm:

I Generate: Suggest some invariant candidates, e. g., by enumerating
all possible formulas ϕ of a certain size.

I Test: Try to prove that ϕ is indeed an invariant.
Usually done inductively:

1. Test that initial state satisfies ϕ.
2. Test that if ϕ is true in the current state, it remains true after applying

a single operator.

I Repair: If invariant test fails, replace candidate ϕ by a weaker
formula, ideally exploiting why the proof failed.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 6 / 19

Invariants Computing invariants

Invariant synthesis: references

We discussed invariant synthesis in detail in previous courses on AI
planning, but this year we do not have enough time.

Literature on invariant synthesis:

I DISCOPLAN (Gerevini & Schubert, 1998)

I TIM (Fox & Long, 1998)

I Edelkamp & Helmert’s algorithm (1999)

I Rintanen’s algorithm (2000)

I Bonet & Geffner’s algorithm (2001)

I Helmert’s algorithm (2009)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 7 / 19

Invariants Exploiting variants

Exploiting invariants

Invariants have many uses in planning:

I Regression search:
Prune states that violate (are inconsistent with) invariants.

I Planning as satisfiability:
Add invariants to a SAT encoding of a planning task to get tighter
constraints.

I Reformulation:
Derive a more compact state space representation
(i. e., with lower percentage of unreachable states).

We now briefly discuss the last point, since it leads to planning tasks in
finite-domain representation, which are very important for the next
chapters.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 8 / 19

FDR planing tasks

9.2 Planning tasks in finite-domain representation

Mutexes
FDR planning tasks
Relationship to propositional planning tasks
SAS+ planning tasks

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 9 / 19

FDR planing tasks Mutexes

Mutexes

Invariants that take the form of binary clauses are called mutexes because
they state that certain variable assignments cannot be simultaneously true
and are hence mutually exclusive.

Example (Blocksworld)

The invariant ¬A-on-B ∨ ¬A-on-C states that A-on-B and A-on-C are
mutex.

Often, a larger set of literals is mutually exclusive because every pair of
them forms a mutex.

Example (Blocksworld)

Every pair in {B-on-A,C-on-A,D-on-A,A-clear} is mutex.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 10 / 19

FDR planing tasks Mutexes

Encoding mutex groups as finite-domain variables

Let L = {l1, . . . , ln} be mutually exclusive literals over n different variables
AL = {a1, . . . , an}.

Then the planning task can be rephrased using a single finite-domain (i.e.,
non-binary) state variable vL with n + 1 possible values in place of the n
variables in AL:

I n of the possible values represent situations in which exactly one of
the literals in L is true.

I The remaining value represents situations in which none of the literals
in L is true.

I Note: If we can prove that one of the literals in L has to be true in
each state, this additional value can be omitted.

In many cases, the reduction in the number of variables can dramatically
improve performance of a planning algorithm.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 11 / 19

FDR planing tasks FDR planning tasks

Finite-domain state variables

Definition (finite-domain state variable)

A finite-domain state variable is a symbol v with an associated finite
domain, i. e., a non-empty finite set.

We write Dv for the domain of v .

Example

v = above-a, Dabove-a = {b, c, d, nothing}
This state variable encodes the same information as the propositional
variables B-on-A, C-on-A, D-on-A and A-clear.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 12 / 19

FDR planing tasks FDR planning tasks

Finite-domain states

Definition (finite-domain state)

Let V be a finite set of finite-domain state variables.

A state over V is an assignment s : V →
⋃

v∈V Dv such that s(v) ∈ Dv

for all v ∈ V .

Example
s = {above-a 7→ nothing, above-b 7→ a, above-c 7→ b,

below-a 7→ b, below-b 7→ c, below-c 7→ table}

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 13 / 19

FDR planing tasks FDR planning tasks

Finite-domain formulae

Definition (finite-domain formulae)

Logical formulae over finite-domain state variables V are defined as in the
propositional case, except that instead of atomic formulae of the form
a ∈ A, there are atomic formulae of the form v = d , where v ∈ V and
d ∈ Dv .

Example

The formula (above-a = nothing) ∨ ¬(below-b = c) corresponds to the
formula A-clear ∨ ¬B-on-C.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 14 / 19

FDR planing tasks FDR planning tasks

Finite-domain effects

Definition (finite-domain effects)

Effects over finite-domain state variables V are defined as in the
propositional case, except that instead of atomic effects of the form a and
¬a with a ∈ A, there are atomic effects of the form v := d , where v ∈ V
and d ∈ Dv .

Example

The effect (below-a := table) ∧ ((above-b = a) B (above-b := nothing))
corresponds to the effect
A-on-T∧¬A-on-B∧¬A-on-C∧¬A-on-D∧(A-on-B B (¬A-on-B∧B-clear)).

 definition of finite-domain operators follows from this

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 15 / 19

FDR planing tasks FDR planning tasks

Planning tasks in finite-domain representation

Definition (planning task in finite-domain representation)

A deterministic planning task in finite-domain representation or FDR
planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

I V is a finite set of finite-domain state variables,

I I is an initial state over V ,

I O is a finite set of finite-domain operators over V , and

I γ is a formula over V describing the goal states.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 16 / 19

FDR planing tasks Relationship to propositional planning tasks

Relationship to propositional planning tasks

Definition (induced propositional planning task)

Let Π = 〈V , I ,O, γ〉 be an FDR planning task.
The induced propositional planning task Π′ is the (regular) planning task
Π′ = 〈A′, I ′,O ′, γ′〉, where

I A′ = {(v , d) | v ∈ V , d ∈ Dv}
I I ′((v , d)) = 1 iff I (v) = d
I O ′ and γ′ are obtained from O and γ by replacing

I each atomic formula v = d with the proposition (v , d), and
I each atomic effect v := d with the effect (v , d) ∧

∧
d′∈Dv\{d} ¬(v , d ′).

I can define operator semantics, plans, relaxed planning graphs, . . .
for Π in terms of its induced propositional planning task

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 17 / 19

FDR planing tasks SAS+ planning tasks

SAS+ planning tasks

Definition (SAS+ planning task)

An FDR planning task Π = 〈V , I ,O, γ〉 is called an SAS+ planning task iff
there are no conditional effects in O and all operator preconditions in O
and the goal formula γ are conjunctions of atoms.

I analogue of STRIPS planning tasks for finite-domain representations

I induced propositional planning task of a SAS+ planning task is
STRIPS

I FDR tasks obtained by invariant-based reformulation of STRIPS
planning task are SAS+

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 18 / 19

Summary

Summary

I Invariants are common properties of all reachable states, expressed as
logical formulas.

I A number of algorithms for computing invariants exist.

I These algorithms will not find all useful invariants (which is too hard),
but try to find some useful subset within reasonable (polynomial)
time.

I Mutexes are invariants that express that certain pairs of state variable
assignments are mutually exclusive.

I Groups of mutexes can be used for problem reformulation,
transforming a planning task into finite-domain representation (FDR).

I Many planning algorithms are more efficient when working on these
FDR tasks (rather than the original tasks) because they contain fewer
unreachable states.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning June 22nd, 2010 19 / 19

	Invariants
	Introduction
	Computing invariants
	Exploiting variants

	Planning tasks in finite-domain representation
	Mutexes
	FDR planning tasks
	Relationship to propositional planning tasks
	SAS+ planning tasks

	Summary

