
Principles of AI Planning
3. PDDL

Malte Helmert and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

April 29th, 2010

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 1 / 21

Principles of AI Planning
April 29th, 2010 — 3. PDDL

3.1 Schematic operators

3.2 PDDL

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 2 / 21

Schematic operators

3.1 Schematic operators

Schematic operators

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 3 / 21

Schematic operators Schemata

Schematic operators

I Description of state variables and operators in terms of a given finite
set of objects.

I Analogy: propositional logic vs. predicate logic

I Planners take input as schematic operators and translate them into
(ground) operators. This is called grounding.

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 4 / 21

Schematic operators Schemata

Schematic operators: example

Schematic operator

x ∈ {car1, car2}
y1 ∈ {Freiburg, Strasbourg},
y2 ∈ {Freiburg, Strasbourg}, y1 6= y2

〈in(x , y1), in(x , y2) ∧ ¬in(x , y1)〉

corresponds to the operators

〈in(car1, Freiburg), in(car1, Strasbourg) ∧ ¬in(car1, Freiburg)〉,
〈in(car1, Strasbourg), in(car1, Freiburg) ∧ ¬in(car1, Strasbourg)〉,
〈in(car2, Freiburg), in(car2, Strasbourg) ∧ ¬in(car2, Freiburg)〉,
〈in(car2, Strasbourg), in(car2, Freiburg) ∧ ¬in(car2, Strasbourg)〉

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 5 / 21

Schematic operators Schemata

Schematic operators: quantification

Existential quantification (for formulae only)

Finite disjunctions ϕ(a1) ∨ · · · ∨ ϕ(an) represented as
∃x ∈ {a1, . . . , an} : ϕ(x).

Universal quantification (for formulae and effects)

Finite conjunctions ϕ(a1) ∧ · · · ∧ ϕ(an) represented as
∀x ∈ {a1, . . . , an} : ϕ(x).

Example

∃x ∈ {A, B, C} : in(x , Freiburg) is a short-hand for
in(A, Freiburg) ∨ in(B, Freiburg) ∨ in(C, Freiburg).

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 6 / 21

PDDL

3.2 PDDL

Overview
Domain files
Problem files
Example

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 7 / 21

PDDL Overview

PDDL: the Planning Domain Definition Language

I used by almost all implemented systems for deterministic planning

I supports a language comparable to what we have defined above
(including schematic operators and quantification)

I syntax inspired by the Lisp programming language: e.g. prefix
notation for formulae

(and (or (on A B) (on A C))
(or (on B A) (on B C))
(or (on C A) (on A B)))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 8 / 21

PDDL Domain files

PDDL: domain files

A domain file consists of

I (define (domain DOMAINNAME)

I a :requirements definition (use :adl :typing by default)

I definitions of types (each parameter has a type)

I definitions of predicates

I definitions of operators

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 9 / 21

PDDL Domain files

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block - object

blueblock smallblock - block)
(:predicates (on ?x - smallblock ?y - block)

(ontable ?x - block)
(clear ?x - block)
)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 10 / 21

PDDL Domain files

PDDL: operator definition

I (:action OPERATORNAME

I list of parameters: (?x - type1 ?y - type2 ?z - type3)

I precondition: a formula

<schematic-state-var>
(and <formula> ... <formula>)
(or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 11 / 21

PDDL Domain files

I effect:

<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 12 / 21

PDDL Domain files

(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 13 / 21

PDDL Problem files

PDDL: problem files

A problem file consists of

I (define (problem PROBLEMNAME)

I declaration of which domain is needed for this problem

I definitions of objects belonging to each type

I definition of the initial state (list of state variables initially true)

I definition of goal states (a formula like operator precondition)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 14 / 21

PDDL Problem files

(define (problem example)
(:domain BLOCKS)
(:objects a b c - smallblock)

d e - block
f - blueblock)

(:init (clear a) (clear b) (clear c)
(clear d) (clear e) (clear f)
(ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))

(:goal (and (on a d) (on b e) (on c f)))
)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 15 / 21

PDDL Example

Example run on the FF planner

./ff -o blocks-dom.pddl -f blocks-ex.pddl
ff: parsing domain file, domain ’BLOCKS’ defined
ff: parsing problem file, problem ’EXAMPLE’ defined
ff: found legal plan as follows
step 0: FROMTABLE A D

1: FROMTABLE B E
2: FROMTABLE C F

0.01 seconds total time

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 16 / 21

PDDL Example

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 17 / 21

PDDL Example

(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 18 / 21

PDDL Example

(:action totable
:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (on ?x ?y))
:effect
(and (not (on ?x ?y))

(clear ?y)
(ontable ?x)))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 19 / 21

PDDL Example

(:action move
:parameters (?x - block

?y - block
?z - block)

:precondition (and (clear ?x) (clear ?z)
(on ?x ?y) (not (= ?x ?z)))

:effect
(and (not (clear ?z))

(clear ?y)
(not (on ?x ?y))
(on ?x ?z)))

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 20 / 21

PDDL Example

(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects d a h g b j e i f c - block)
(:init (clear c) (clear f)

(ontable i) (ontable f)
(on c e) (on e j) (on j b) (on b g)
(on g h) (on h a) (on a d) (on d i))

(:goal (and (on d c) (on c f) (on f j)
(on j e) (on e h) (on h b)
(on b a) (on a g) (on g i)))

)

M. Helmert, B. Nebel (Universität Freiburg) AI Planning April 29th, 2010 21 / 21

	Schematic operators
	Schematic operators

	PDDL
	Overview
	Domain files
	Problem files
	Example

