
Foundations of Artificial Intelligence

Prof. Dr. B. Nebel, Prof. Dr. W. Burgard
B. Frank, A. Karwath, G. Röger
Summer Term 2009

University of Freiburg
Department of Computer Science

Exercise Sheet 7

Due: Tuesday, June 23, 2009

Exercise 7.1 (Situation Calculus and Golog)

Action languages are used to program a system’s (eg. a robot’s) behaviour by describing it in a
high-level manner. Golog is one such language that is (in its theoretical aspects) based on the
situation calculus. The implementation of Golog is based on Prolog (hence the name).
IndiGolog is a variant of Golog that allows sensing and exogenous events and which is executed
online (the actions of the system are not precomputed before the execution starts).
You find a tarball containing IndiGolog on the webpage. Since there is only a Linux implementation
available, you will need a Linux installation or to use one of the computers in the pool. In the pool
all necessary additional software is already installed. On your personal computer you might have
to install additional software (SWI-Prolog, consult the exercise webpage).
On the exercise webpage you can also find some information about how to execute the Wumpus
world example contained in the tarball.

(a) Execute the Wumpus example. Afterwards, have a look at the file wumpus.pl (you need not
to understand everything) and find out what the following parts mean:

• poss(moveFwd, neg(inTheEdge(locRobot,dirRobot))).

• causes(turn, dirRobot, Y, rotateRight(dirRobot,Y)).

• interrupt(isGold(locRobot)=true, [pickGold])

Probably you can find the correct answer by a closer look and some thinking. If not, a search
in the following paper should help:

http://www.dis.uniroma1.it/~degiacom/papers/2009/IndiGologChapter09.pdf.

(b) When observing the Action history and Sensing results in the applet, you notice that the robot
still performs smell actions, also if it already has shot the Wumpus. Modify the procedure
mainControl(4) in such a way that the robot no longer performs these unnecessary actions.
(Add an if statement that test whether the Wumpus is still alive. For the else part you need
an empty action which you can simulate using ?(true).)

(c) Up to now, the robot can only turn clock-wise (using the turn action). There are already
stubs for new actions turnRight and turnLeft, but these are currently not executable (and
not fully implemented). Make these actions executable and the original turn action non-
executable by modifying their preconditions. Add code that specifies the effect of these
new actions. For this purpose, you will need a new predicate rotateLeft analogous to
rotateRight for action turnLeft. Up to now, the turn action was used by the procedures
move(D) and shoot(D). Procedure move(D) must be read as follows: Search for an action
sequence that executes turn at most 4 times to make dirRobot=D true. After that, perform
action moveFwd.



Your task in this exercise is to modify these procedures so that they use the new actions
instead of turn. Do this in such a way that the robot performs as few turns as possible
(within these procedures).

To solve this, use ndet(actions1,actions2)which allows the search for the action sequence
to choose whether to perform actions1 or actions2. Don’t use the test action (the one
starting with the questionmark) inside ndet.

Test your implementation by executing the program.

Your submission for parts (b) and (c) (together) should contain all changes to file wumpus.pl and
the Action history and Sensing results of a run of the final program version.

Exercise 7.2 (Allen’s Interval Calculus)

(a) In general, the composition of two binary relations R and S (over X) is defined as

R ◦ S = {(x, z) | ∃y ∈ X such that (x, y) ∈ R and (y, z) ∈ S}.

Allen’s interval calculus is closed under composition which means that every composition of
Allen relations (also for unions of the 13 base relations) can be represented as union of base
relations. For example, f ◦ s = d because for arbitrary intervals A, B and C with AfB and
BsC it must hold that AdC. Note that in general the composition of two base relations needs
not to result in a single base relation, as you can see from the example f−1 ◦ d = (o, d, s).
Determine the following compositions:

(1) o ◦ m

(2) m ◦ f

(3) (o, m) ◦ f

(b) The composition is also used for the constraint propagation technique. Use this technique to
make the following constraint network 3-consistent.

Hint: If there is no directed edge from one interval to another one, this implicitly implies
that the all-relation (the union of all 13 base relations) holds for these intervals. You may
use in your solution that (IRJ, ISJ)−1 = (IR−1J, IS−1J) (for intervals I, J and R, S base
relations of Allen’s interval calculus).

A B

C D

(<,=, >)

(o, d−1, f−1)
m

(<, s−1)

(o, s, d)

Exercise 7.3 (Decision Trees)

(a) Specify decision trees representing the following Boolean functions:

(1) A XOR B



(2) (A ∧ B) ∨ (C ∧ D)

(b) Here we will practice the basic information-theoretical concepts used to build decision trees.
Consider the following set of training examples:

a1 a2 Classification
T T +
T T +
T F -
F F +
F T -
F T +

What is the information content of this collection of training examples with respect to the
target function Classification? What is the information gain of a2 relative to these training
examples?

The exercise sheets may and should be handed in and be worked on in groups of three (3) students.
Please fill the cover sheet1 and attach it to your solution.

1http://www.informatik.uni-freiburg.de/~ki/teaching/ss09/gki/coverSheet-english.pdf


