Foundations of AI 17. Machine Learning Revisted

Supervised and Unsupervised Learning Wolfram Burgard, Bernhard Nebel, and Andreas Karwath

Machine Learning

- Can be roughly divided into:
 - Supervised Learning: Trying to learn in order to predict an class or a value
 - Unsupervised Learning: Trying to group similar examples together or to find interesting patterns in the data

Supervised Learning

- Algorithms (small example set)
 - Decision Tree Learning
 - Rule Induction
 - Neural Networks
 - SVM
 - ...

Unsupervised Learning

- Algorithms (small example set)
 - Clustering
 - K-Means, Spectral Clustering, ...
 - Local Pattern Mining
 - Item set mining, sub-sequence mining, subgraph mining
 - Association Rules

— ...

Supervised Learning: Rule Induction

• Method 1:

- Learn decision tree, convert to rules

- Method 2:
 - Sequential covering algorithm:
 - Learn one rule with high accuracy, any coverage
 - Remove positive examples covered by this rule
 - Repeat

Sequential Covering Algorithm

Sequential-Covering(*Target_attribute*, *Attributes*, *Examples*, *Threshold*) Output: *Set of Rules*

- Learned_rules $\leftarrow \{ \}$
- *Rule* ← Learn-one-rule(*Target_attribute*, *Attributes*, *Examples*)
- While Performance(*Rule, Examples*) > *Threshold*, do
 - Learned_rules ← Learned_rules ∪ { Rule}
 - *Examples* ← *Examples* / {examples correctly classified by *Rule*}
 - *Rule* ← Learn-one-rule(*Target_attribute*, *Attributes*, *Examples*)
- Learned_rules ← sort Learned_rules according to Performance over Examples
- return *Learned_rules*

EnjoySports

Sky	Temperature	Humidity	Wind	Water	Forecast	PlayTennis
sunny	warm	normal	strong	warm	same	yes
sunny	sunny	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	sunny	high	strong	cool	change	yes

Learn-One-Rule

Learn One Rule

General-to-Specific Search:

- Consider the most general rule (hypothesis) which matches every instances in the training set.
- Repeat
 - Add the attribute that most improves rule performance measured over the training set.
- Until the hypothesis reaches an acceptable level of performance.

<u>General-to-Specific Beam Search (CN2):</u>

 Rather than considering a single candidate at each search step, keep track of the k best candidates.

Learn One Rule

While Pos, do

Learn a NewRule

- *NewRule : =* most general rule possible
- NewRuleNeg : = Neg
- while NewRuleNeg, do
 - 1. Candidate_literals : = generate candidates
 - 2. Best_literal := argmax_{L∈Candidate_literals} Performance(SpecializeRule(NewRule, L))
 - 3. add Best_literal to NewRule preconditions
 - 4. NewRuleNeg : = subset of NewRuleNeg that satisfies NewRule preconditions
- Learned_rules := Learned_rules + NewRule
- Pos := Pos {members of Pos covered by NewRule}

Return *Learned_rules*

Subtleties: Learn One Rule

- Easily generalizes to multi-valued target functions
- Choose evaluation function to guide search:
 - Entropy (i.e., information gain)
 - Sample accuracy:

- m-estimate $\frac{n_c + mp}{n + m}$
 - Where n_c correct rule predictions (support)
 - and *n* all predictions (coverage)

Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- General to specific, or specific to general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation function?
- How to combine predictions for multiple classes ?

Ripper

- A state of the art rule-learner (Cohen)
- Key idea:
 - apply reduced error pruning on rule set (IREP)
 - rule IF c_1 and c_2 and ... and c_n THEN class
 - post prune by consider deleting " c_i and ... and c_n "
 - once all rules have been learned optimize rule set $R_{\rm 1}, \, ..., \, R_{\rm k}$
 - try to improve rules R_i by
 - growing and pruning
 - deleting
- Standard approach by now

Unsupervised Methods: Clustering

Sky	Temperature	Humidity	Wind	Water	Forecast	PlayTennis
sunny	warm	normal	strong	warm	same	yes
sunny	sunny	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	sunny	high	strong	cool	change	yes

Clustering (1)

- Common technique for statistical data analysis (machine learning, data mining, pattern recognition, ...)
- Classification of a data set into subsets (clusters)
- Ideally, data in each subset have a similar characteristics (proximity according to distance function)

Clustering (2)

- Needed: distance (similarity / dissimilarity) function, e.g., Euclidian distance
- Clustering quality
 - Inter-clusters distance maximized
 - Intra-clusters distance minimized
- The quality depends on
 - Clustering algorithm
 - Distance function
 - The application (data)

Types of Clustering

- Hierarchical Clustering
 - Agglomerative Clustering (buttom up)
 - Divisive Clustering (top-down)

- Partitional Clustering
 - K-Means Clustering (hard & soft)
 - Gaussian Mixture Models (EM-based)

K-Means Clustering

- Partitions the data into k clusters (k is to be specified by the user)
- Find k reference vectors m_j, j = 1,...,k which best explain the data X
- Assign data vectors to nearest (most similar) reference *m_i*

$$\left\|\mathbf{x}^{t} - \mathbf{m}_{i}\right\| = \min_{j} \left\|\mathbf{x}^{t} - \mathbf{m}_{j}\right\|$$

r-dimensional data vector in a real-valued space

reference vector (center of cluster = mean)

Reconstruction Error (K-Means as Compression Alg.)

• The total reconstruction error is defined as

with
$$E\left(\left\{\mathbf{m}_{i}\right\}_{i=1}^{k} \middle| \mathbf{X}\right) = \sum_{t} \sum_{i} b_{i}^{t} \left\|\mathbf{x}^{t} - \mathbf{m}_{i}\right\|^{2}$$
$$b_{i}^{t} = \begin{cases} 1 & \text{if } \left\|\mathbf{x}^{t} - \mathbf{m}_{i}\right\| = \min_{j} \left\|\mathbf{x}^{t} - \mathbf{m}_{j}\right\| \\ 0 & \text{otherwise} \end{cases}$$

- Find reference vectors which minimize the error
- Taking its derivative with respect to m_i and setting it to 0 leads to

$$\mathbf{m}_{i} = \frac{\sum_{t} b_{i}^{t} \mathbf{x}^{t}}{\sum_{t} b_{i}^{t}}$$

K-Means Algorithm

Initialize $\boldsymbol{m}_i, i = 1, \dots, k$, for example, to k random \boldsymbol{x}^t Repeat For all $\boldsymbol{x}^t \in \mathcal{X}$ $b_i^t \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$ For all $\boldsymbol{m}_i, i = 1, \ldots, k$ $\boldsymbol{m}_i \leftarrow \sum_t b_i^t \boldsymbol{x}^t / \sum_t b_i^t$ Until m_i converge

Recompute the cluster centers m_i using current cluster membership

Assign each **x**^t to the closest cluster

K-Means Example

ng 17 / 20

Strength of K-Means

- Easy to understand and to implement
- Efficient O(nkt)
 n = #iterations, k = #clusters, t = #data
 points
- Converges to a local optimum (global optimum is hard to find)
- Most popular clustering algorithm

Weaknesses of K-Means

- User needs to specify #clusters (k)
- Sensitive to initialization (strategy: use different seeds)
- Sensitive to outliers since all data points contribute equally to the mean (strategy: try to eliminate outliers)

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-Compute centeroids

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

Soft Assignments

- So far, each data point was assigned to exactly one cluster
- A variant called soft k-means allows for making fuzzy assignments
- Data points are assigned to clusters with certain probabilities

Soft K-Means Clustering

 Each data point is given a soft assignment to all means

$$c_{tk} = \frac{\exp(-\beta ||x^t - m_k||^2)}{\sum_i \exp(-\beta ||x^t - m_i||^2)}, \ \sum_k c_{tk} = 1$$

- β is a "stiffness" parameter and plays a crucial role
- Means are updated $m_k = \frac{\sum_t c_{tk} x^t}{\sum_t c_{tk}}$
- Repeat assignment and update step until assignments do not change anymore

Soft K-Means Clustering

- Points between clusters get assigned to both of them
- Points near the cluster boundaries play a partial role in several clusters
- Additional parameter β
- Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians)

After Clustering

- Dimensionality reduction methods find correlations between features and group features
- Clustering methods find similarities between instances and group instances
- Allows knowledge extraction through number of clusters,
 - prior probabilities,
 - cluster parameters, i.e., center, range of features.
 - Example: CRM, customer segmentation

Clustering as Preprocessing

- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs
 Distributed representation (After PCA; all z_j are nonzero)

Summary

- K-Means is the most popular clustering algorithm
- It is efficient and easy to implement
- Converges to a local optimum
- A variant of hard k-means exists allowing soft assignments
- Soft k-means corresponds to the EM algorithm which is a general optimization procedure