	Machine Learning
Foundations of Al 17. Machine Learning Revisted Supervised and Unsupervised Learning <i>Wolfram Burgard, Bernhard Nebel, and Andreas Karwath</i>	 Can be roughly divided into: Supervised Learning: Trying to learn in order to predict a class or a value Unsupervised Learning: Trying to group similar examples together or to find interesting patterns in the data
Supervised Learning	^{17/} Unsupervised Learning
 Algorithms (small example set) Decision Tree Learning Rule Induction Neural Networks SVM 	 Algorithms (small example set) Clustering K-Means, Spectral Clustering, Local Pattern Mining Item set mining, sub-sequence mining, subgraph mining Association Rules

Supervised Learning: Rule Induction

- Method 1:
 - Learn decision tree, convert to rules
- Method 2:
 - Sequential covering algorithm:
 - · Learn one rule with high accuracy, any coverage
 - Remove positive examples covered by this rule
 - Repeat

Sequential Covering Algorithm

Sequential-Covering(*Target_attribute, Attributes, Examples, Threshold*) Output: *Set of Rules*

- *Learned_rules* ← { }
- Rule ← Learn-one-rule(Target_attribute, Attributes, Examples)
- While Performance(*Rule, Examples*) > *Threshold*, do
 - Learned_rules ← Learned_rules ∪ { Rule}
 - Examples ← Examples / {examples correctly classified by Rule}
 - *Rule* ← Learn-one-rule(*Target_attribute*, *Attributes*, *Examples*)
- Learned_rules ← sort Learned_rules according to Performance over Examples
- return Learned_rules

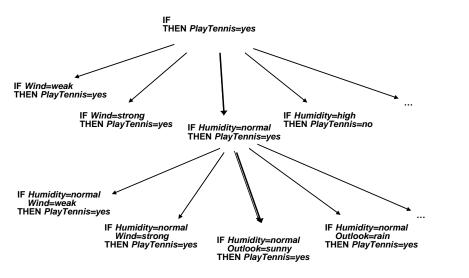
17/4

17 / 5

EnjoySports

Sky	Temperature	Humidity	Wind	Water	Forecast	PlayTennis
sunny	warm	normal	strong	warm	same	yes
sunny	sunny	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	sunny	high	strong	cool	change	yes

Learn-One-Rule



Learn One Rule

General-to-Specific Search:

- Consider the most general rule (hypothesis) which matches every instances in the training set.
- Repeat
 - Add the attribute that most improves rule performance measured over the training set.
- Until the hypothesis reaches an acceptable level of performance.

General-to-Specific Beam Search (CN2):

• Rather than considering a single candidate at each search step, keep track of the *k* best candidates.

17 / 8

Subtleties: Learn One Rule

- Easily generalizes to multi-valued target functions
- Choose evaluation function to guide search:
 - Entropy (i.e., information gain)
 - Sample accuracy:
 - m-estimate

 $\frac{n_c + mp}{n + m}$

- Where n_c correct rule predictions (support)
- and *n* all predictions (coverage)

Learn One Rule

While Pos, do

Learn a NewRule

- NewRule := most general rule possible
- NewRuleNeg := Neg
- while NewRuleNeg, do
 - 1. Candidate_literals := generate candidates
 - 2. Best_literal := argmax_{L∈Candidate_literals} Performance(SpecializeRule(NewRule, L))
 - 3. add Best_literal to NewRule preconditions
 - 4. NewRuleNeg := subset of NewRuleNeg that satisfies NewRule preconditions
- Learned_rules : = Learned_rules + NewRule
- Pos := Pos {members of Pos covered by NewRule}

Return Learned_rules

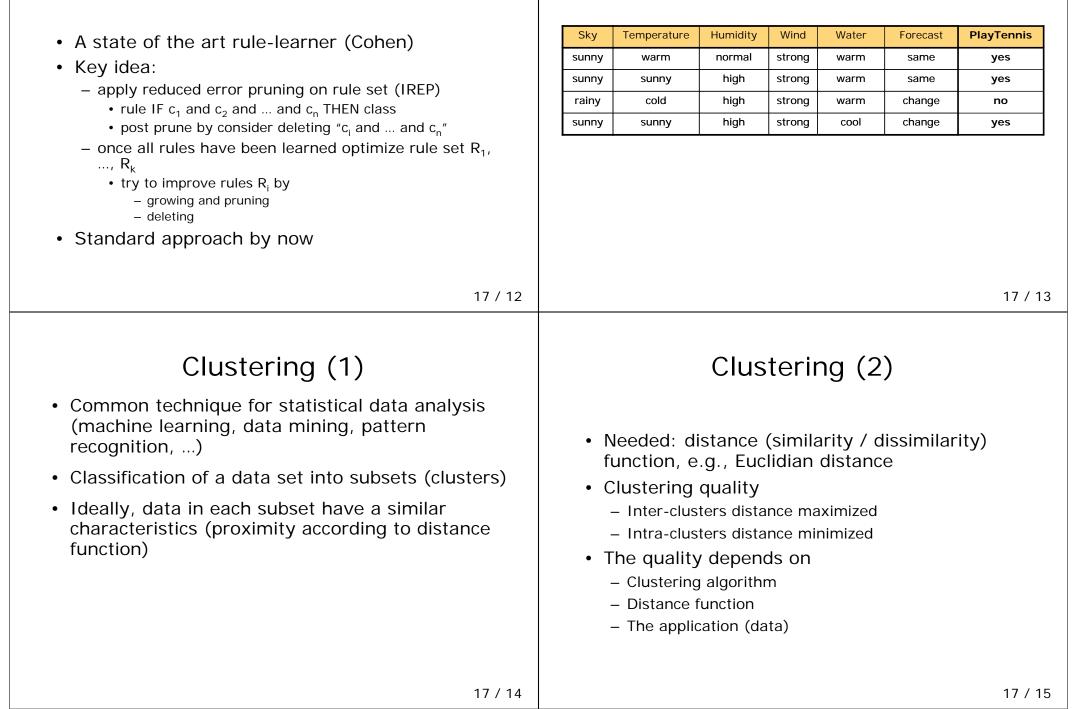
17 / 9

Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- · General to specific, or specific to general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation function?
- How to combine predictions for multiple classes ?

Ripper

Unsupervised Methods: Clustering

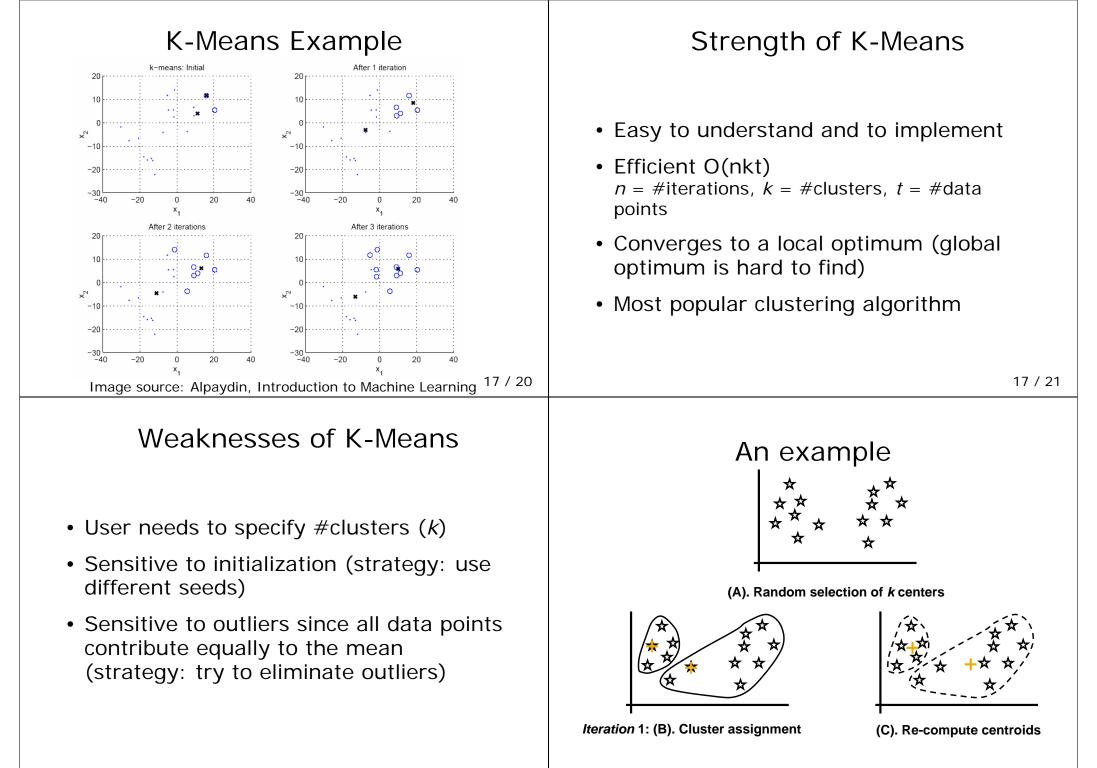


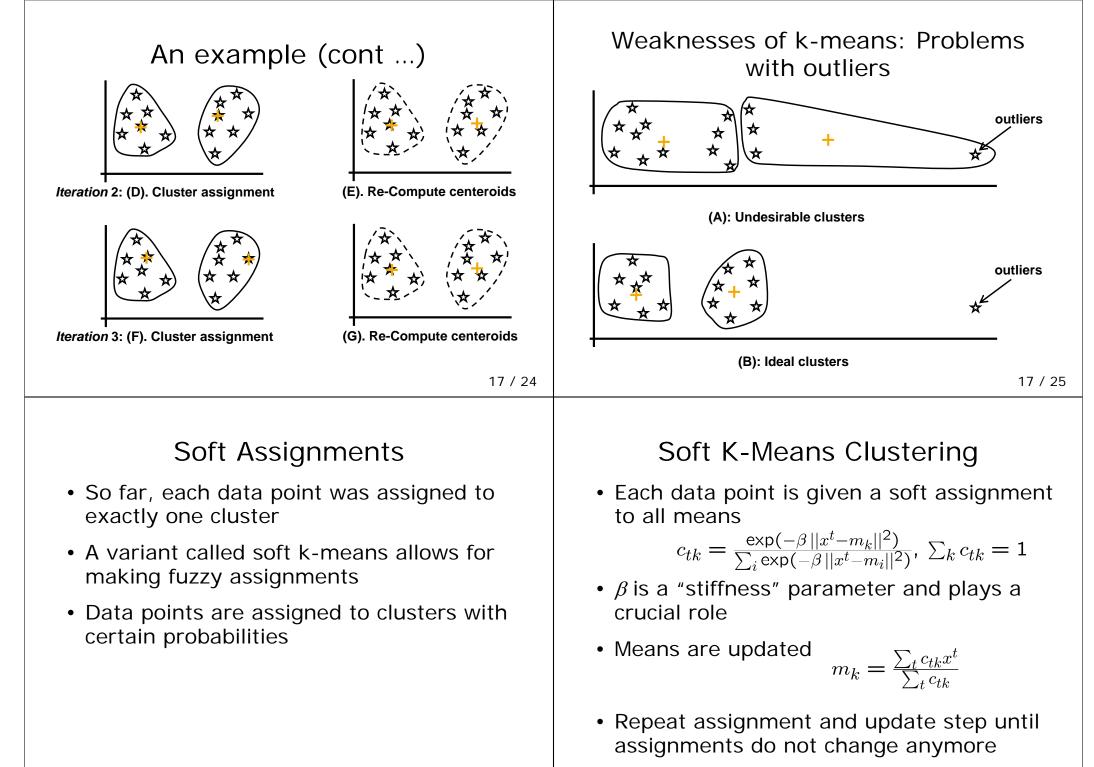
Lypes of Clustering
• Hierarchical Clustering
• Agglomerative Clustering (buttom up)
• Divisive Clustering (top-down)
• Partitional Clustering
• K-Means Clustering (top-down)
• Partitional Clustering
- K-Means Clustering (hard & soft)
• Gaussian Mixture Models (EM-based)
• Trife
Reconstruction Error
(K-Means as Compression Alg.)
• The total reconstruction error is defined as

$$E\left(\left[\mathbf{m}, \overset{X}{k}, |X\right] \in \sum_{i} \sum_{j} b_{i}^{i} ||\mathbf{x}^{i} - \mathbf{m}_{i}||^{2} \\ \text{with} \qquad b_{i}^{i} = \begin{cases} 1 & \text{if } ||\mathbf{x}^{i} - \mathbf{m}_{i}|| \\ 0 & \text{otherwise} \end{cases}$$
• Find reference vectors which minimize the error
• Find reference vectors which minimize the error
• Taking its derivative with respect to m_i and setting
it to 0 leads to

$$\mathbf{m}_{i} = \frac{\sum_{j} b_{i}^{i} \cdot \mathbf{m}_{i}}{\sum_{i} b_{i}^{i} \cdot \mathbf{m}_{i}} = 17.148$$

17 / 18





17 / 27

Soft K-Means Clustering	After Clustering
 Points between clusters get assigned to both of them Points near the cluster boundaries play a partial role in several clusters Additional parameter β Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians) 	 Dimensionality reduction methods find correlations between features and group features Clustering methods find similarities between instances and group instances Allows knowledge extraction through number of clusters, prior probabilities, cluster parameters, i.e., center, range of features. Example: CRM, customer segmentation
Clustering as Preprocessing	Summary
 Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor. Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs Distributed representation (After PCA; all z_j are nonzero) 	 K-Means is the most popular clustering algorithm It is efficient and easy to implement Converges to a local optimum A variant of hard k-means exists allowing soft assignments Soft k-means corresponds to the EM algorithm which is a general optimization procedure