
08/1

Foundations of AI

8. Satisfiability and Model

Construction

Davis-Putnam, Phase Transitions, GSAT
Wolfram Burgard, Andreas Karwath, 

Bernhard Nebel, and Martin Riedmiller



08/2

Contents

� Motivation

� Davis-Putnam Procedure

� “Average” complexity of the satisfiability 
problem

� GSAT: Greedy SAT Procedure



08/3

Motivation

� Usually:

� Given: A logical theory (set of propositions)

� Question: Does a proposition logically follow from 
this theory?

� Reduction to unsatisfiability, which is coNP-complete
(complementary to NP problems)

� Sometimes:

� Given: A logical theory

� Wanted: Model of the theory.

� Example: Configurations that fulfill the constraints 
given in the theory.

� Can be “easier” because it is enough to find one 
model



08/4

The Davis-Putnam Procedure

DP Function

Given a set of clauses ∆ defined over a set of variables ∑, return 
“satisfiable” if ∆ is satisfiable. Otherwise return “unsatisfiable”.

1. If return “satisfiable”

2. If return “unsatisfiable”

3. Unit-propagation Rule: If ∆ contains a unit-clause C, assign 
a truth-value to the variable in C that satisfies C, simplify ∆
to ∆’ and return DP(∆’).

4. Splitting Rule: Select from ∑ a variable v which has not 
been assigned a truth-value. Assign one truth value t to it, 
simplify ∆ to ∆’ and call DP(∆’)

a. If the call returns “satisfiable”, then return “satisfiable”

b. Otherwise assign the other truth-value to v in ∆, 
simplify to ∆’’ and return DP(∆’’).



08/5

Example (1)



08/6

Example (2)



08/7

Properties of DP

� DP is complete, correct, and guaranteed to 
terminate.

� DP constructs a model, if one exists.

� In general, DP requires exponential time
(splitting rule!)

� DP is polynomial on horn clauses, i.e., clauses 
with at most one positive literal.

→ Heuristics are needed to determine which 
variable should be instantiated next and which 
value should be used 

→ In all SAT competitions so far, DP-based 
procedures have shown the best performance.



08/8

DP on Horn Clauses (1)

Note:
1. The simplifications in DP on Horn clauses 

always generate Horn clauses.

2. A set of Horn clauses without unit clauses
is satisfiable
– All clauses have at least one negative literal

– Assign false to all variables

3. If the first sequence of applications of the 
unit propagation rule in DP does not lead 
to the empty clause, a set of Horn clauses 
without unit clauses is generated (which is 
satisfiable according to (2))



08/9

DP on Horn Clauses (2)

4. Although a set of Horn clauses without a 
unit clause is satisfiable, DP may not 
immediately recognize it.

a. If DP assigns false to a variable, this cannot 
lead to an unsatisfiable set and after a sequence 
of unit propagations we are in the same 
situation as in 4.

b. If DP assigns true, then we may get an empty 
clause - perhaps after unit propagation (and 
have to backtrack) - or the set is still satisfiable 
and we are in the same situation as in 4.



08/10

DP on Horn Clauses (3)

In summary:

1. DP executes a sequence of unit propagation
steps resulting in

� an empty clause or 

� a set of Horn clauses without a unit clause, which 
is satisfiable

2. In the latter case, DP proceeds by choosing for 
one variable:

� false, which does not change the satisfiability

� true, which either

– leads to an immediate contradiction (after unit 
propagation) and backtracking or

– does not change satisfiabilty

� Run time is polynomial in the number of 
variables



08/11

How Good is DP in the Average Case?

� We know that SAT is NP-complete, i.e., in the 
worst case, it takes exponential time.

� This is clearly also true for the DP-procedure.

→ Couldn’t we do better in the average case?

� For CNF-formulae in which the probability for 
a positive appearance, negative appearance 
and non-appearance in a clause is 1/3, DP 
needs on average quadratic time (Goldberg 
79)!

→ The probability that these formulae are 
satisfiable is, however, very high.



08/12

Phase Transitions …

Conversely, we can, of course, try to identify 
hard to solve problem instances.

Cheeseman et al. (IJCAI-91) came up with 
the following plausible conjecture:

All NP-complete problems have at least one order
parameter and the hard to solve problems are 
around a critical value of this order parameter. This 
critical value (a phase transition) separates one 
region from another, such as over-constrained and 
under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton 
path … later also for other NP-complete 
problems.



08/13

Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92): 
Clause length k is given. Choose variables for every clause k
and use the complement with probability 0.5 for each 
variable.

Phase transition for 3-SAT with a clause/variable ratio of 
approx. 4.3:



08/14

Empirical Difficulty
The Davis-Putnam (DP) Procedure shows extreme 
runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of 
the more easily satisfiable/unsatisfiable instances!



08/15

Notes on the Phase Transition

� When the probability of a solution is close to 1 
(under-constrained), there are many solutions, 
and the first search path of a backtracking search 
is usually successful.

� If the probability of a solution is close to 0 (over-
constrained), this fact can usually be determined 
early in the search.

� In the phase transition stage, there are many near 
successes (“close, but no cigar”).

→ (limited) possibility of predicting the difficulty of 
finding a solution based on the parameters.

→ (search intensive) benchmark problems are 
located in the phase region (but they have a 
special structure)



08/16

Local Search Methods for Solving 
Logical Problems

In many cases, we are interested in finding a 
satisfying assignment of variables (example 
CSP), and we can sacrifice completeness if we 
can “solve” much large instances this way.

Standard process for optimization problems: 
Local Search

� Based on a (random) configuration

� Through local modifications, we hope to 
produce better configurations

→ Main problem: local maxima



08/17

Dealing with Local Maxima

As a measure of the value of a configuration in a 
logical problem, we could use the number of 
satisfied constraints/clauses.

But local search seems inappropriate, considering 
we want to find a global maximum (all 
constraints/clauses satisfied).

By restarting and/or injecting noise, we can often 
escape local maxima.

Actually: Local search performs very well for 
finding satisfying assignments of CNF formulae 
(even without injecting noise).



08/18

GSAT

Procedure GSAT

INPUT: a set of clauses α, MAX-FLIPS, and MAX-TRIES

OUTPUT: a satisfying truth assignment of α, if found

begin
for i:=1 to MAX-TRIES

T := a randomly-generated truth assignment
for j:=1 to MAX-FLIPS

if T satisfies α then return T
v := a propositional variable such that a change in its truth 

assignment gives the largest increase in the number of clauses 
of α that are satisfied by T.

T:=T with the truth assignment of v reversed
end for

end for
return “no satisfying assignment found”

end



08/19

The Search Behavior of GSAT

� In contrast to normal local search methods, 
we must also allow sideways movements!

� Most time is spent searching on plateaus.



08/20

State of the Art

� SAT competitions since beginning of the 
´90

� Current SAT competitions 
(http://www.satcompetiton.org/):
In 2007: 
� Largest “industrial” instances: 

1,000,000 literals with size 10,000,000 

� Complete solvers are as good as 
randomized ones!



08/21

Concluding Remarks

� DP-based SAT solver prevail:
� Very efficient implementation techniques

� Good branching heuristics

� Clause learning

� Incomplete randomized SAT-solvers
� are good (in particular on random 

instances)

� but there is no dramatic increase in size of 
what they can solve

� parameters are difficult to adjust


