Foundations of AI

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms *Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller*

Contents

- Best-First Search
- A* and IDA*
- Local Search Methods
- Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the cost of a given node to the goal is in the form of an *evaluation function f* or *h*, which assigns a real number to each node.

Best-First Search: Search procedure that expands the node with the "best" *f*- or *h*-value.

General Algorithm

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(*problem*, Queueing-Fn)

When *h* is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its distance to the goal.

h(n) = estimated distance from n to the goal

The only real condition is that h(n) = 0 if n is a goal.

A best-first search with this function is called a greedy search.

Route-finding problem: h = straight-line distancebetween two locations.

Greedy Search Example

Greedy Search from *Arad* **to** *Bucharest*

04/7

Heuristics

The evaluation function *h* in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word ευρισκειν (note also: ευρηκα!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

 \rightarrow In all cases, the heuristic is *problem-specific* and *focuses* the search!

A*: Minimization of the estimated path costs

A* combines the greedy search with the uniform-search strategy.

g(n) = actual cost from the initial state to n.

h(n) = estimated cost from n to the next goal.

f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal.

h is *admissible* if the following holds for all *n* :

$$h(n) \leq h^*(n)$$

We require that for A^* , *h* is admissible (straight-line distance is admissible).

A* Search Example

A* Search from *Arad* **to** *Bucharest*

04/11

Contours in A*

Within the search space, contours arise in which for the given *f*-value all nodes are expanded.

Contours at f = 380, 400, 420

Example: Path Planning for Robots in a Grid-World

Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* , but A* has found another node G₂ with $g(G_2) > f^*$.

Let *n* be a node on the path from the start to G that has not yet been expanded. Since *h* is admissible, we have

 $f(n) \leq f^*$.

Since *n* was not expanded before G_2 , the following must hold:

 $f(G_2) \leq f(n)$

and

 $f(G_2) \leq f^*.$

It follows from $h(G_2) = 0$ that

 $g(G_2) \leq f^*.$

 \rightarrow Contradicts the assumption!

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant δ such that every operator has at least cost δ .

→ Only a finite number of nodes *n* with $f(n) \leq f^*$.

Complexity:

In the case where $|h^*(n) - h(n)| \le O(\log(h^*(n)))$, only a sub-exponential number of nodes will be expanded – provided the search space is a tree and there is only one goal state. This, however, is a quite unrealistic assumption [Helmert & Roeger, 2008] (best AAAI paper 2008)

Normally, growth is exponential because the error is proportional to the path costs.

Heuristic Function Example

 $h_1 =$ the number of tiles in the wrong position

 $h_2 =$ the sum of the distances of the tiles from their goal positions (*Manhatten distance*)

Empirical Evaluation

- *d* = distance from goal
- Average over 100 instances

	Search Cost			Effective Branching Factor		
d	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$	IDS	$A^{*}(h_{1})$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Iterative Deepening A* Search (IDA*)

Idea: A combination of IDS and A*. All nodes inside a contour are searched.

function IDA*(problem) returns a solution sequence inputs: problem, a problem static: f-limit, the current f- COST limit root, a node $root \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ f-limit $\leftarrow f$ - COST(root) loop do if solution is non-null then return solution if *f*-limit = ∞ then return failure; end function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit inputs: node, a node f-limit, the current f- COST limit static: next-f, the f- COST limit for the next contour, initially ∞ if f - COST[node] > f-limit then return null, f - COST[node] if GOAL-TEST[problem](STATE[node]) then return node, f-limit for each node s in SUCCESSORS(node) do solution, new- $f \leftarrow DFS$ -CONTOUR(s, f-limit) if solution is non-null then return solution, f-limit *next-f* \leftarrow MIN(*next-f*, *new-f*); end return null, next-f

Local Search Methods

In many problems, it is unimportant how the goal is reached – only the goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a **local search** can be used to find solutions.

Idea: Begin with a randomly-chosen configuration and improve on it stepwise \rightarrow Hill Climbing.

Hill Climbing

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node
current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end</pre>
```

Example: 8-Queens Problem

Selects a column and moves the queen to the square with the fewest conflicts.

Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- Plateaus: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- *Start over* when no progress is being made.
- "Inject smoke" \rightarrow random walk
- Tabu search: Do not apply the last n operators.

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Simulated Annealing

In the simulated annealing algorithm, "smoke" is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

current \leftarrow MAKE-NODE(INITIAL-STATE[problem])

for t \leftarrow 1 to \infty do

T \leftarrow schedule[t]

if T=0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow VALUE[next] - VALUE[current]

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta E/T}
```

Has been used since the early 80's for VSLI layout and other optimization problems.

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by "crossing", "mutating", and "selecting" successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bitstring
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Selection, Mutation, and Crossing

04/26

Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h* is never overestimated, we obtain the A* search, which is complete and optimal.
- IDA* is a combination of the iterative-deepening and A* searches.
- Local search methods only ever work on one state, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.