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In this project, we implement some CSP-related algorithms.

Note: The emphasis of the projects lies on the implementation, not
so much on theoretical aspects. If you are not sure at some points
how the algorithms and definitions from the lecture can be imple-
mented in practise, feel free to ask questions.

You may use C, C++, Java or Python for your implementation. If
you want to use another language, please contact us before you start
the project.

The programs that you submit must conform to the required in- and
output formats, pass several tests and be commented sufficiently.
We will not accept programs that do not meet these demands but
you may amend them until the due date. Hence, we ask for early
submissions so that enough time remains for amendments.

Exercise P1.1 (Arbitrary binary CSPs, 2 marks)

(a) Write a generator that randomly creates binary constraint networks de-
pending on the following parameters:

v number of variables

w number of values in the domains

c number of constraints

d density of the constraints, i.e. the number of actual entries divided
by the number of possible entries

The parameters should be specified as command line arguments. Use the
following example as guidance for your input and output (in particular,
respect the sorting of constraints and set elements).

# random-network -v 4 -w 3 -c 4 -d 0.4

Variables:

V = {v_0, v_1, v_2, v_3}
Domain:

D = {V_0, V_1, V_2}



Constraints:

R_0_1 = {(V_0,V_0), (V_1,V_0), (V_1,V_1), (V_2,V_0)}
R_0_2 = {(V_0,V_0), (V_0,V_1), (V_1,V_1), (V_2,V_1)}
R_0_3 = {(V_0,V_2), (V_1,V_0), (V_1,V_1), (V_2,V_1)}
R_1_2 = {(V_1,V_1), (V_1,V_2), (V_2,V_1), (V_2,V_2)}

(b) Extend your program by algorithm EnforcePathConsistency. Besides
the original CSP, also output the constraints of the equivalent path con-
sistent CSP.

Example output:

# path-consistency -v 4 -w 3 -c 4 -d 0.4

Variables:

V = {v_0, v_1, v_2, v_3}
Domain:

D = {V_0, V_1, V_2}
Constraints:

R_0_2 = {(V_0,V_0), (V_0,V_1), (V_1,V_0), (V_1,V_1)}
R_0_3 = {(V_0,V_2), (V_1,V_0), (V_2,V_0), (V_2,V_2)}
R_1_3 = {(V_0,V_1), (V_1,V_0), (V_1,V_2), (V_2,V_2)}
R_2_3 = {(V_1,V_0), (V_1,V_1), (V_1,V_2), (V_2,V_0)}

Constraints of the path consistent network:

R_0_0 = {(V_0,V_0), (V_1,V_1)}
R_0_1 = {(V_0,V_1), (V_0,V_2), (V_1,V_1)}
R_0_2 = {(V_0,V_1), (V_1,V_1)}
R_0_3 = {(V_0,V_2), (V_1,V_0)}
R_1_1 = {(V_1,V_1), (V_2,V_2)}
R_1_2 = {(V_1,V_1), (V_2,V_1)}
R_1_3 = {(V_1,V_0), (V_1,V_2), (V_2,V_2)}
R_2_2 = {(V_1,V_1)}
R_2_3 = {(V_1,V_0), (V_1,V_2)}
R_3_3 = {(V_0,V_0), (V_2,V_2)}

Exercise P1.2 (Allen’s interval calculus, 2 marks)

(a) Write an parser that reads CSPs (for Allen’s interval calculus) that are
given in the following form:

• The first line contains the number v of variables

• The next v lines contain the variables

• The next line contains the number c of constraints

• Each of the next c lines contains one constraint which is written as
<variable1>:<variable2>:(<base relations>)

The input file on the left hand side should result in the output on the
right hand side:



4

P1

P2

P3

P4

4

P2:P1:(d)

P2:P3:(< m)

P3:P1:(d)

P4:P2:(d f)

Variables:

V = {P1, P2, P3, P4}
Constraints:

R_P1_P1 = {=}
R_P1_P2 = {di}
R_P1_P3 = {di}
R_P1_P4 = {<, =, >, d, di, f, fi, m, mi,

o, oi, s, si}
R_P2_P1 = {d}
R_P2_P2 = {=}
R_P2_P3 = {<, m}
R_P2_P4 = {di, fi}
R_P3_P1 = {d}
R_P3_P2 = {>, mi}
R_P3_P3 = {=}
R_P3_P4 = {<, =, >, d, di, f, fi, m, mi,

o, oi, s, si}
R_P4_P1 = {<, =, >, d, di, f, fi, m, mi,

o, oi, s, si}
R_P4_P2 = {d, f}
R_P4_P3 = {<, =, >, d, di, f, fi, m, mi,

o, oi, s, si}
R_P4_P4 = {=}

(b) Implement algorithm EnforcePathConsistency2. On the website you
can find the composition table in a format that is easy to parse. Again,
print the resulting constraints, e.g.

Constraints:

R_P1_P1 = {=}
R_P1_P2 = {di}
R_P1_P3 = {di}
R_P1_P4 = {di}
R_P2_P1 = {d}
R_P2_P2 = {=}
R_P2_P3 = {<, m}
R_P2_P4 = {di, fi}
R_P3_P1 = {d}
R_P3_P2 = {>, mi}
R_P3_P3 = {=}
R_P3_P4 = {>, mi}
R_P4_P1 = {d}
R_P4_P2 = {d, f}
R_P4_P3 = {<, m}
R_P4_P4 = {=}



Exercise P1.3 (Comparison, 1 mark)

Write a translator that translates CSPs from exercise 2 to the style required
in exercise 1 by instantiating the symbolic constraints for the domain {(x, y) |
x, y ∈ {1, . . . , n}}, where n is given as command line argument. Use your
implementation in exercise 1 to make the resulting constraint network path
consistent.

Furthermore, use your implementation from exercise 2 to make the (symbolic)
source CSP path consistent and instantiate the resulting constraints with the
domain from the previous part.

Compare the results for different n (example input CSPs will be published on
the website).


